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Introduction

Interval-censored data

T : survival time of interest

An observation on T is interval-censored if instead of observing T

exactly, only an interval (L,R ] is observed such that

T ∈ (L,R ]

cf. Grouped data: intervals for any two subjects either are completely
identical or have no overlapping
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Introduction

Types of interval-censored data

Case I interval-censored data or current status data

T is only known to be larger or smaller than an observed monitoring
time, C
Either L = 0 or R = ∞
Observed data: {(C , δ = I (C ≤ T ))}
eg, Cross-sectional studies or tumourigenicity experiments

Case II interval-censored data

Include at least one interval (L,R ] with both L and R

In experiments with two monitoring times, U and V , with U ≤ V ,
T ≤ U , U < T ≤ V , or T > V

Case K interval-censored data

In longitudinal studies with periodic follow-up and K monitoring times,
M1, . . . ,MK , the event is only observed between two consecutive
inspecting times, Ml and Ml+1, and the observed data reduced to
(Ml ,Ml+1]
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Introduction

Non-informative interval censoring

Censoring times are independent of the survival time completely or
given covariates

Except for the fact that T lies between l and r , the interval (L,R ]
does not provide any extra information for T , i.e.,

P(T ≤ t|L = l ,R = r , L < T ≤ R) = P(T ≤ t|l < T ≤ r),

In the existence of covariates, Z ,

P(T ≤ t|L = l ,R = r , L < T ≤ R ,Z = z)

= P(T ≤ t|l < T ≤ r ,Z = z)
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Non-parametric estimation

Notation

Observed data: O = {(Li ,Ri ]; i = 1, . . . , n}
Want to estimate S(t) = P(T > t) or F (t) = 1− S(t)

{tj}m+1
j=0 : unique ordered elements of {0, {Li}ni=1, {Ri}ni=1,∞}, i.e.,

0 = t0 < t1 < · · · < tm < tm+1 = ∞

Define
αij = I ((tj−1, tj ] ⊂ (Li ,Ri ])

and
pj = S(tj−1)− S(tj), j = 1, . . . ,m + 1
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Non-parametric estimation

Non-parametric MLE

Likelihood function for p = (p1, . . . , pm+1)
′ :

LS (p) =

n∏
i=1

[S(Li )− S(Ri)] =

n∏
i=1

m+1∑
j=1

αijpj

Depend on S only through {S(tj)}mj=1

NPMLE, Ŝ , of S : Maximize LS (p) under
∑m+1

j=1 pj = 1 and pj ≥ 0

Ŝ : Right-continuous step function, i.e., Ŝ(t) = Ŝ(tj−1), tj−1 ≤ t < tj

Remark

Some elements of p̂ = (p̂1, . . . , p̂m+1)
′ could be 0 and it could help to

know these zero components before running a determination process
p̂j could be non-zero only if tj−1 = Li for some i and tj = Rk for some
possibly k , i , k = 1, . . . , n (Turnbull (JRSSB, 1976)’s approach)
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Non-parametric estimation

Illustrative example

Subject number Li Ri

1 0 7
2 0 8
3 6 10
4 7 16
5 7 14
6 17 ∞
7 37 44
8 45 ∞
9 46 ∞
10 46 ∞

t0 = 0, t1 = 6, t2 = 7, t3 = 8, t4 = 10, t5 = 14, t6 = 16, t7 = 17, t8 =
37, t9 = 44, t10 = 45, t11 = 46, t12 = ∞
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Non-parametric estimation

Turnbull intervals

Sub.
# t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
1 0 7
2 0 8
3 6 10
4 7 16
5 7 14
6 17 ∞
7 37 44
8 45 ∞
9 46 ∞
10 46 ∞

(6 7](7 8] (37 44] (46 ∞)
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Non-parametric estimation

Likelihood: complete data-based

Suppose {Ti}ni=1 are available

Log-likelihood for the complete data

lS(p;T1, . . . ,Tn) = log[

n∏
i=1

dF (Ti )] =

m+1∑
j=1

(log pj)

n∑
i=1

I (Ti = sj)
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Non-parametric estimation

EM algorithm: E-step

Proposed by Turnbull (JRSSB, 1976) using EM algorithm (Dempster
et al., JRSSB, 1977)

E-step: Compute the conditional expectation of the complete-data
log-likelihood given the observed data O & p = p̂(s)

E [lS(p;T1, . . . ,Tn)|O, p̂(s)] =
m+1∑
j=1

(log pj)
n∑

i=1

E [I (Ti = sj)|O, p̂(s)]

=

m+1∑
j=1

(log pj)

n∑
i=1

αij p̂
(s)
j∑m+1

l=1 αil p̂
(s)
l
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Non-parametric estimation

EM algorithm: M-step

M-step: Maximize the conditional expectation wrt p subject to∑m+1
j=1 pj = 1 and pj ≥ 0

LS(p, λ) =
m+1∑
j=1

(log pj)
n∑

i=1

αij p̂
(s)
j∑m+1

l=1 αil p̂
(s)
l

+ λ(1−
m+1∑
j=1

pj)

NPMLE at the (s + 1)th step:

p̂
(s+1)
j =

1

n

n∑
i=1

αij p̂
(s)
j∑m+1

l=1 αil p̂
(s)
l

, j = 1, . . . ,m + 1

Iterate E & M steps until convergence

EM algorithm leads to a self-consistency estimate if the iteration
converges
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Non-parametric estimation

Self-consistency algorithm

Rewriting p̂
(s+1)
j = 1

n
E [

∑n
i=1 I (Ti = sj)|O, p̂(s)] in its cumulative

form in terms of distribution function,

F̂ (s+1)(t) =
1

n
E [

n∑
i=1

I (Ti ≤ t)|O, F̂ (s)],

where F̂ (s)(t) =
∑

j :sj≤t p̂
(s)
j

Easily implemented, but slowly converge and do not guarantee
NPMLE

Another algorithms: ICM(iterative convex minorant, Groeneboom &
Wellner, 1992), Hybrid algorithm(EM-ICM, Wellner & Zhan, JASA,
1997)
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Non-parametric estimation

Asymptotic behavior of NPMLE

Unlike with right-censored data, the use of the counting process
technique is quite difficult and as a consequence, the martingale
theory cannot be applied

Ŝ is strongly consistent, but the convergence rate is Op(n
−1/3)

(Geskus & Groeneboom, Statistica Neerlandica, 1997) and its limiting
distribution is non-normal because of lack of information
(Groeneboom, 1996)

But, linear functionals of Ŝ are asymptotically normal with the usual
n1/2-rate such as the estimated mean failure time, Ê (T ) =

∫
tdF̂ (t),

where F̂ = 1− Ŝ (Geskus & Groeneboom, Statistica Neerlandica,
1997)
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Non-parametric estimation

Example

Two treatments for breast cancer, radiation (Rad, n=46), and
radiation with chemotherapy (RadChem, n=48)

Response: Time in months until breast retraction (Finkelstein &
Wolfe, BCS, 1985)

Use R package interval: icfit function

icfit function calculates NPMLE by EM algorithm

> library(interval)
> data(bcos)
> head(bcos)

left right treatment
1 45 Inf Rad
2 6 10 Rad
3 0 7 Rad
4 46 Inf Rad
5 46 Inf Rad
6 7 16 Rad
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Non-parametric estimation

Results: NPMLE by EM algorithm

> fit<-icfit(Surv(left,right,type=”interval2”)∼ treatment,data=bcos)
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Non-parametric estimation

Estimated survival curves

>plot(fit)
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Comparison of survival functions

Objective: Hypothesis testing

S (k)(t) : Survival function of the kth arm with k = 1, . . . ,K

Want to test
H0 : S (1)(t) = · · · = S (K)(t),∀t

With right censoring,

Rank-based tests: Rely on differences between the estimated hazard
functions, eg, log-rank test
Survival-based tests: Rely on differences between the estimated survival
functions

Generalize to the case of interval-censored data
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Comparison of survival functions

Notation

Ŝ0 : NPMLE of the S (k)’s under H0

δi = 0 if right-censored and 1 otherwise

ρij = I (δi = 0, Li ≥ tj}, i.e., ρij = 1 if Ti is right-censored and subject
i is still ar risk at tj−
Define the estimates of the total observed failures and risk numbers,
respectively, as

dj =
n∑

i=1

δi
αij [Ŝ0(tj−)− Ŝ0(tj)]∑m+1
l=1 αil [Ŝ0(tl−)− Ŝ0(tl )]

, j = 1, . . . ,m,

nj =

m+1∑
r=j

n∑
i=1

δi
αir [Ŝ0(tr−)− Ŝ0(tr )]∑m+1
l=1 αil [Ŝ0(tl−)− Ŝ0(tl)]

+

n∑
i=1

ρij , j = 1, . . . ,m

Similarly, define djk and njk from subjects in arm k = 1, . . . ,K
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Comparison of survival functions

Weighted log-rank tests

Define U = (U1, . . . ,UK )
′ with

Uk =

m∑
j=1

(djk − njk
dj

nj
)

Estimation of the covariance matrix of U : employ resampling
methods such as multiple imputation, bootstrap and permutation
procedures

Remark

When K = 2, with W (t) = 1,

U1 =

∫ ∞

0

W (t)
Y1(t)Y2(t)

Y1(t) + Y2(t)
[d Λ̂1(t)− d Λ̂2(t)],

where Yk(t) =
∑

j:tj≤t njk and Λ̂k(t) =
∑

j:tj≤t djk/njk

General weight process: W (t) = Ŝ0(t−)ρ[1− Ŝ0(t−)]γ with ρ, γ > 0
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Comparison of survival functions

Survival-based tests

Zhang et al. (BKA, 2001) and Fang et al. (StatSinica, 2002): Based
on ∫ τ

0
W (t)[Ŝ (1)(t)− Ŝ (2)(t)]dt

Ŝ (k) : NPMLE of S (k), separately
τ : longest follow-up time
Specially, when W (t) = 1, reduced to the difference of the estimated
sample means

Supremum-type test based on the difference between the estimated
survival functions (Yuen et al., BKA, 2006)
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Comparison of survival functions

Example(continued): Logrank test

Use R package interval: ictest function

> Suntest<-ictest(Surv(left,right,type=”interval2”)∼
treatment,scores=”logrank1”,data=bcos)
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Regression models Proportional hazards model

Proportional hazards model

Data: {(Li ,Ri ],Zi ; i = 1, . . . , n}
Zi : p-dimensional vector of covariates

Model: λ(t|Z) = λ0(t)e
β

′Z

λ0(t) : unknown baseline hazard function
β : vector of unknown regression parameters

Unlike right-censored data, estimating β under interval censoring
involve estimation of both β and the cumulative baseline hazard
function, Λ0(t) =

∫ t

0 λ0(s)ds

J. Kim (Univ Suwon) Interval-censored data Sprring KSS 2011 23 / 41



Regression models Proportional hazards model

ML approach

Likelihood function: L =
∏n

i=1[S(Li ;Zi )− S(Ui ;Zi )]

S(t;Z) = S0(t)
exp(β′Z) : Survival function for a subject with covariates

Z

Log-likelihood: Assuming that Li < Ri ,∀i ,

l(β,S0) =

n∑
i=1

log{[S0(Li )exp(β
′Zi ) − S0(Ri )

exp(β
′Zi )]}

S0 : baseline survival function, S0(t) = e−Λ0(t)

Focus on estimation of S0 at the different observation time points,
i.e., t0 = 0 < t1 < · · · < tm+1 = ∞, of the form,

S0(t) =
∏
j :tj≤t

e− exp(αj ) = e
−

∑
j :tj≤t exp(αj )

α = (α1, . . . , αm)
′ : unknown parameters
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Regression models Proportional hazards model

ML approach (continued)

l(β,S0) can be rewritten as

l(β,α) =
n∑

i=1

log{
m+1∑
j=1

αij [e
− exp(β

′Zi )aj−1 − e− exp(β
′Zi )aj ]}

aj =
∑j

k=1 exp(αk)

Use the Newton-Raphson algorithm to determine the MLE of β and
α (Finkelstein, BCS, 1986)

Asymptotic properties (Huang & Wellner, 1997)

Ŝ0: strongly consistent
β̂ : asymptotically normal with the usual

√
n-convergence rate and

efficient
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Regression models Proportional hazards model

Alternative approaches

Marginal likelihood approach

Based on the likelihood given by the sum over all rankings of the
underlying and unobserved failure times that are consistent with the
observed censoring intervals (Kalbfleish & Prentice, BKA, 1973)
NOT require estimation of S0, but involve much computational works
Use Gibbs sampling procedure for generating underlying rankings and
stochastic approximation for solving the score equations (Sattern,
BKA, 1996)
MCMC EM algorithm for determination of regression parameter
estimates (Giggins et al., BCS, 1998)

Multiple imputation procedure (Pan, BCS, 2000)
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Regression models Proportional odds model

Proportional odds model

S(t;Z)

1−S(t;Z)
= e−β

′Z S0(t)
1−S0(t)

⇔ S(t;Z) = 1

1+exp[H(t)+β
′Z]

H(t) = −logit[S0(t)] : baseline log-odds function

As in PH model case, directly maximize a likelihood function wrt β
and H or S0

Other sieve ML approaches: piecewise linear function (Huang &
Rossini, JASA, 1997), monotone spline (Shen, BKA, 1998)

Alternative method: based on the approximate conditional likelihood
(Rabinowitz et al., BKA, 2000)

Free of estimation of H or S0
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Regression models Accelerated failure time model

Accelerated failure time model

logT = β′Z+ e

e : error variable with an unknown distribution function F

e is independent of L, R , and Z
Directly specify the linear relationship between logT and Z

Likelihood

L(β,F ) =
n∏

i=1

[F (Ri (β))− F (Li (β))]

Ri(β) = log(Ri)− β
′Z, Li (β) = log(Li )− β

′Z,

Unlike the previous two models, ML approach is relatively hard
because β and F are tangled in the likelihood.
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Regression models Accelerated failure time model

Linear rank-based approach

Key idea: each individual’s censoring times, L and R , can be
translated into a sequence of current status observations

Denote Li by Xi1 and Ri by Xi2

Likelihood

L∗(β,F ) =

n∏
i=1

2∏
j=1

F (Xij(β))
1−δij [1− F (Xij(β))]

δij ,

where δij = I (Xi ≤ Tij), j = 1, 2

F̂b : NPMLE of F based on L∗(β,F ) with β = b applied to
{(δij ,Xij(b)); i = 1, . . . , n, j = 1, 2}
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Regression models Accelerated failure time model

Linear rank-based approach (continued)

Propose a linear rank statistic (Betensky et al, BKA, 2001)

S(b) =

n∑
i=1

2∑
j=1

[Yij − F̂b(Xij(b))]Zi

β̂ : value of b for which S(b) is closest to zero

Rabinowitz et al. (BKA, 1995): based on L(β,F ) instead of L∗(β,F )

Asymptotic efficiency is achieved, but not to be practical
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Regression models Additive risk model

Additive risk model

Model: λ(t;Z) = λ0(t) + β′Z

Likelihood

n∏
i=1

[S0(Li )e
−(β

′Zi )Li − S0(Ri )e
−(β

′Zi )Ri ]

As in PH model case, directly maximize a likelihood function wrt β
and S0

Ŝ0 : non-increasing step function with jumps only at the observed
examination times

Ŝ0 almost surely converge to S0 and β̂ is asymptotically normal
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Regression models Additive risk model

Alternative approaches

Transformation approach (Zhu et al., LIDA, 2008)

Define two sets of current status data such as ΩL = {(Li , δ1i = I (Ti ≤
Li),Z); i = 1, . . . , n}, ΩR = {(Ri , δ2i = I (Ti > Ri),Z); i = 1, . . . , n}
For observed interval-censored data,
Ω = {(Li ,Ri , δ1i , δ2i ,Z); i = 1, . . . , n},

Ω = ΩL ∪ ΩR

Denote UC (β,Ω) by the estimating function based on the current
status data Ω
Estimate β based on the estimating equation

U(β,Ω) = UC (β,ΩL) + UC (β,ΩR) = 0

Multiple imputation approach (Chen & Sun, CommStat, 2010)

J. Kim (Univ Suwon) Interval-censored data Sprring KSS 2011 32 / 41



Miscellaneous topics

Miscellaneous topics

Multivariate interval-censored data

When happens? A survival study involves several related survival
variables of interest and each of them suffers interval censoring
Need to take into account the correlation among the survival variables
and make inference the association between the survival variables

Doubly censored data

Motivated by AIDS research
De Gruttola & Lagakos (BCS, 1989) proposed a SC algorithm for
estimating of the survival function of AIDS latency time

Competing risks analysis

When needed? The failure on an individual may be one of several
distinct failure types
For the current status data, Groeneboom et al. (AnnStat, 2008)

Truncation

Parametric procedures
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Miscellaneous topics Informative censoring

Informative interval-censored data

Define the contribution of an interval censored observation to the
likelihood by

Pr(L = l ,R = r ,T ∈ (L,R ]) = Pr(T ∈ (L,R ]|L = l ,R = r)dG (l , r),

where dG : joint density function of (L,R)

Under the independent interval censoring, replace by

Pr(l < T ≤ r),

called as a simplified likelihood (i.e., can ignore the censoring
mechanism or the observation process)
Under what conditions we have or what types of observation
processes give independent interval censoring?

When a censoring model satisfies a constant-sum condition (Oller et
al., CanadJ, 2004), for all t ∈ {t : dF (t) > 0},∫

{(l,r):t∈(l,r ]}

Pr(L ∈ dl ,R ∈ dr ,T ∈ (L,R ])

Pr(T ∈ (L,R ])
= 1
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Miscellaneous topics Informative censoring

Informative interval-censored data

Common way to deal with the informative censoring are to jointly
model the survival variable and the censoring variables or assume that
the complete observation process is known. For the latter, it is
important to have follow-up beyond the failure.

For current status data, van der Laan & Robins (JASA, 1998), Zhang
et al. (StatMed, 2005)

For interval-censored data, Finkelstein et al. (BCS, 2002), Betensky
& Finkelstein (BCS, 2002), Zhang et al. (StatMed, 2007)
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Miscellaneous topics Current status data with informative censoring

Estimating equation approach

With a regression analysis of current status data (Zhang et al.,
StatMed, 2005),

Data: {(Ci , δi = I (Ci ≤ Ti ,Zi); i = 1, . . . , n}
Assumption: Given Z, T & C are correlated

So, assume that the relationship between T and C can be
characterized by a random effects u, and given u, T and C are
independent.

For Ti , assume an additive risk model

λT (t|ui ,Zi) = λt0(t) + ui + β′Zi

For Ci , assume the Cox PH model

λC (t|ui ,Zi) = λc0(t) exp(ui + γ′Zi)
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Miscellaneous topics Current status data with informative censoring

Estimating equation approach (continued)

Define a counting process as

Ni (t) = δi I (Ci ≤ t)

Note that
E (dNi (t)|Zi ) = eγ

′Zi−β
′Zi tdΛ∗

0(t),

where dΛ∗(t) = e−Λt0(t)E [e(1−t)ui ]dΛc0(t). So,

M∗(t) = Ni (t)−
∫ t

0
Yi(s)e

γ ′Zi−β
′Zi sdΛ∗

0(s) : martingales

For inference about β & γ, apply the partial likelihood method
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Miscellaneous topics Interval-censored data with informative censoring

Full likelihood approach

With a regression analysis of interval-censored data (Zhang et al.,
StatMed, 2007),

Assumption: Conditional on Zi & bi , Ti , Li , & Wi = Ri − Li are
independent

Let bi = (bi1, bi2, bi3)
′ ∼ MVN(0,Σ) : a vector of unobserved or

latent variables

For Ti , Li , & Wi = Ri − Li , assume the Cox PH models, respectively,
as follows:

λT (t|bi ,Zi) = λt0(t) exp(bi1 + β′Zi)

λL(t|bi ,Zi) = λl0(t) exp(bi2 + γ ′Zi )

λW (t|bi ,Zi) = λw0(t) exp(bi3 + ξ′Zi)
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Miscellaneous topics Interval-censored data with informative censoring

Full likelihood approach (continued)

Let ζ = (ζ1, . . . , ζm)
′, where ζj = log Λt0(sj)

Let θ = (β′,γ ′, ξ′, ζ ′, σkl , 1 ≤ k ≤ l ≤ 3)′

Let ∆i = (δ1i , δ2i )
′, where δ1i = I (Ti ≤ Li ) and

δ2i = I (Li < Ti ≤ Ri)

Let Ψi = I (Wi < ∞)

Full likelihood based on the observed data, O = {O1, . . . ,On}, where
Oi = (∆i ,Ψi , Li ,Wi ,Z

′
i )
′, is given by

LO(θ) =

n∏
i=1

∫
L∆|Li ,Wi ,bi

(θ)L
Li |bi

(θ)L
Wi |bi

(θ)f (bi ,Σ)dbi

But, difficult to maximum this full likelihood since the bi ’s are
unknown

Use EM-algorithm for making inference about θ
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Thank you!
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