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Interval censoring

Four types of interval-censored data

Case I interval-censored data, called by current status data
Case II interval-censored data, in short interval-censored data
Doubly interval-censored data (cf Double censoring)
Panel count data (cf Recurrent event data)

Reference: Sun(2006, The Statistical Analysis of Interval-censored
Failure Time Data)
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Current status data

Ti , i = 1, . . . , n : Survival time

Data: {(Ci , I (Ti ≤ Ci ),Zi ); i = 1, . . . , n}

Ci : Examination (Observation) time such as death time or sacrifice
time
Only left-censored, Ti ∈ (0,Ci ), or right-censored, Ti ∈ (Ci ,∞)
Assume Ti and Ci are independent given covariate Zi

Eg., Tumorigenicity experiments
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Issues

When the examination time would be predetermined, the independent
assumption is appropriate

BUT, in tumorigenicity study, the censoring happens either at death
or at sacrifice

When examination is made with naturally dead animal, this death
may be related with tumor onset and the independence assumption is
not valid any more
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Background

With non-lethal tumor, death would be independent with tumor onset

For lethal tumor, two cases can be considered:

With a rapidly lethal tumor, the death time follows the onset of tumor
and log-rank test using death times is used to compare treatments on
tumor onset time
With an intermediate lethal tumor, the correlation between the tumor
onset time and death time is not known

Reference: Lagakos and Louis (1988, Applied Statistics)
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Three-state model

Three states: Health, tumor, and death

The lethality was measured by the ratio of two death hazards, i.e.,
death with tumor and death without tumor, and was composed of
baseline lethality and treatment lethality.

Reference: Lindsey and Ryan (1993, Applied Statistics; 1994,
Environmental Health Perspective Supplements) and French and
Ibrahim (2002, Biometrics)
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Schematic diagram

Figure: Three-state illness model
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Our way

Estimate the effect of treatment on the tumor onset time and the
death time considering the possible correlation between tumor onset
and death

Introduce a normal frailty to incorporate the dependency
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Data

X : Tumor onset time

NOT directly observed, instead, only know whether or not tumor onset
occurred before an examination time (T )
∆ = 1 if X < T and ∆ = 0 otherwise

For the examination time, there are two possible cases: natural death
time (T1) and sacrifice time (T2)

T = min(T1,T2) : Observable examination time
D = I (T1 < T2)
Assume that T2 is independent of X and T1

Observable data: {(ti , δi , di , zi); i = 1, . . . , n}
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Three models

Hazard rate of tumor onset:

αi (x |zi , ri ) = α0(x)exp(β
′
zi + ri ), ri ∼ N(0, σ2) (1)

Hazard rate of death without tumor onset:

λ̃i (t|zi ) = λ0(t)exp(ψ
′
zi ) (2)

Hazard rate of death with tumor onset:

λi (t|zi , ri ) = λ0(t)exp{(ψ + γ)′zi + τ ri} (3)

τ : A role to connect tumor onset and death due to frailty
If τ > 0, an animal with higher frailty on tumor onset will result in

earlier death

Unlike Lindsey and Ryan (1993, 1994) and French and Ibrahim (2002),
our model assumes that the lethality due to tumor onset is
animal-specific rather than same for all animals
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Preliminary results

Table: Estimated mean, bias, empirical standard error (SE), mean of the 1,000
estimated standard errors (SEM), and 95% coverage rate (CR) for the parameters
β, ψ, γ, and η (exp(η) : lethality parameter) in LR model (Lindsey and Ryan,
1993) with sacrifice times of 12, 18, and 33

Parameter True Mean Bias SE SEM CR

β 3.2463 3.4574 0.0650 0.6666 0.5364 92.3
ψ -0.1493 -0.1467 0.0173 0.5483 0.5215 95.7
γ -3.4780 -2.5003 0.2811 1.3463 0.7943 65.6
η 4.7831 3.7605 0.2138 1.2167 0.5641 49.6

The coverage rates of γ and η among the regression parameters in LR
model are fairly lower than a nominal level due to ignoring the
dependency
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Four possible factors: With no tumor cases

For sacrifice with no tumor (SNT), (δi , di ) = (0, 0),

Li1 = exp{−

∫ ti

0
{αi (u|zi , ri ) + λ̃i (u|zi )}du};

For death with no tumor (DNT), (δi , di ) = (0, 1),

Li2 = λ̃i (ti |zi) exp{−

∫ ti

0
{αi (u|zi , ri ) + λ̃i(u|zi)}du};
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Four possible factors: With tumor cases

For sacrifice with tumor (SWT), (δi , di ) = (1, 0),

Li3 =

∫ ti

0
fX (u|zi , ri )S̃T (u|zi)

ST (ti |zi , ri )

ST (u|zi , ri )
du;

SX , S̃T and ST : Survival functions corresponding to the three models
respectively
fX (x |zi , ri ) = αi (x |zi , ri )SX (x |zi , ri )

For death with tumor (DWT), (δi , di ) = (1, 1),

Li4 = λi (ti |zi , ri )

∫ ti

0
fX (u|zi , ri )S̃T (u|zi )

ST (ti |zi , ri )

ST (u|zi , ri )
du
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Complete data

Complete data: {(xi , ti , δi , di , zi ); i = 1, . . . , n}

xi : Tumor onset time

Based on the complete data, Li3 and Li4 can be represented as,
respectively,

L̃i3 = αi (xi |zi , ri ) exp{−

∫ xi

0
{αi (u|zi , ri ) + λ̃i (u|zi )}du

−

∫ ti

xi

λi(u|zi , ri )du};

L̃i4 = λi(ti |zi , ri )αi (xi |zi , ri ) exp{−

∫ xi

0
{αi (u|zi , ri ) + λ̃i(u|zi)}du

−

∫ ti

xi

λi (u|zi , ri )du}
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Likelihood

Complete-data-based likelihood:

Lc =

n∏
i=1

L
(1−δi )(1−di )
i1 L

(1−δi )di
i2 L̃

δi (1−di )
i3 L̃δidii4 φ(ri |σ

2)

φ(r |σ2) = (2πσ2)−1/2 exp{−(2σ2)−1r2}
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Piecewise exponential model

Following Lindsey and Ryan (1993, 1994) and French and Ibrahim
(2002), suppose that there are J time points, s1, . . . , sJ , and that

α0(t) = α0j , t ∈ Ij = (sj−1, sj ], j = 1, . . . , J;

λ0(t) = λ0j , t ∈ Ij
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Likelihood

Complete-data-based log-likelihood: Letting
θ = (α′,λ′,β,ψ,γ, τ, σ2)′, θ1 = (α′,β)′, θ2 = (λ′,ψ,γ, τ)′, and
θ3 = σ2,

lc = log(Lc ) = lθ1 + lθ2 + lθ3

lθ1 =
∑J

j=1{N
T
j logαj − αj

∑n

i=1 exp(β
′
zi + ri )T

NT
ij }+

∑n

i=1 z
′

i(δiβ);

lθ2 =
∑J

j=1{(aj + bj) logλj − λj
∑n

i=1{exp(ψ
′
zi )T

NT
ij + exp((ψ +

γ)′zi + τ ri )T
T
ij }} +

∑n

i=1{z
′

i (diψ + δidiγ) + (δi + τdi δi)ri};

lθ3 =
∑n

i=1 logφ(ri |σ
2)
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Two kinds of missing terms: Unobservable tumor onset

time

aj =
∑n

i=1(1− δi )dijdi : Number of death without tumor in Ij
dij = I (ti ∈ Ij)

bj =
∑n

i=1 δidijdi : Number of death with tumor in Ij

aj and bj : Known, BUT

NT
j : Number of subjects with tumor in interval Ij

TNT
ij andTT

ij : Time the ith subject spends with no tumor and with
tumor in interval Ij

NT
j , TT

ij , and TNT
ij : NOT known

According to Lindsey and Ryan (1993, 1994), calculate E(NT
j |O,θ),

E(TNT
ij |O,θ) and E(TT

ij |O,θ)
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Two kinds of missing terms: Frailty

Conditional on observed data, O = {Oi = (ti , δi , di , zi ), i = 1, . . . , n},

fRi |O(r |θ) =
Li (r ;θ)∫∞

−∞ Li (u;θ)du

Li(r ; θ) = L
(1−δi )(1−di )
i1 L

(1−δi )di
i2 L

δi (1−di )
i3 L̃δidii4 φ(r |σ2)

Employ the Gauss-Hermite method for calculating the functionals of
frailty such as E(Ri |O,θ), E(R

2
i |O,θ), E{exp(Ri)|O,θ},

E{exp(τRi)|O,θ} etc
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EM Procedure

Start with θ
(0)
j , j = 1, 2, 3

For k = 0, 1, . . . , update θ
(k)
j through

θ
(k+1)
j = θ

(k)
j −{

∂2Qj(θj |θ
(k)
j )

∂θj∂θ
′
j

}−1

θ=
j
θ
(k)
j

{
∂Qj (θj |θ

(k)
j )

∂θj
}
θj=θ

(k)
j

, j = 1, 2, 3

Qj(θj |θ
(k)
j ) = E

θ
(k)
j

(lθj |O), j = 1, 2, 3

Iterate E-M steps until ||θ(k+1) − θ(k)||∞ < ǫ

θ
(r) = (θ

(r)′

1 , θ
(r)′

2 , θ3)
′

|| · ||∞ : Maximum norm
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Variance estimation

Define negative Hessian matrix as a block diagonal matrix, Q, with
elements,

−
∂2Qj(θj |θ

(s)
j )

∂θj∂θ
′
j

|
θj=θ

(s)
j

, j = 1, 2, 3

SE of the respective estimate is given by the square root of
corresponding diagonal element of inverse of Q

Another estimator: Louis’ method, BUT analytically cumbersome as
pointed out by Lindsey and Ryan (1993)
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Simulation setup: Design parameters

Binary covariate

Low-dose animals: zi = 0, i = 1, . . . , 130;
High-dose animals: zi = 1, i = 131, . . . , 225

Frailty: ri ∼ N(0, 0.36662), i = 1, . . . , 225

Baseline hazard rates

α01 = 0.0006 and λ01 = 0.0017 on I1 = (0, 13];
α02 = 0.0018 and λ02 = 0.0069 on I2 = (13, 19];
α03 = 0.0243 and λ03 = 0.0721 on I3 = (19, 25];
α04 = 0.0001 and λ04 = 0.2734 on I4 = (25, 33]

Set β = 3.4185, ψ = 0.1689, γ = 0.6946, and τ = 3.8467

Sacrifice times

T2i = 13, i = 1, . . . , 16; 19, i = 17, . . . , 105; 33, i = 106, . . . , 130;
T2i = 13, i = 131, . . . , 145; 19, i = 146, . . . , 207; 33, i = 208, . . . , 225
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Simulation setup: Tumor onset and death times

Step 1: Generate Xoi , from model (1) with α0(t) = α0j on
Ij , j = 1, . . . , 4

Step 2: Generate T̃1i , from model (2) with λ0(t) = λ0j on
Ij , j = 1, . . . , 4

Step 3: If T̃1i < Xoi ,

Go to Step 4;
Otherwise, go to Step 5

Step 4: If T̃1i ≤ T2i ,

Ti = T̃1i , δi = 0, di = 1 (DNT);
Otherwise, Ti = T2i , δi = 0, di = 0 (SNT)

Step 5: Conditional on Xoi , generate T1i from piecewise exponential
distribution with λ0(t) = λ0j on Ij , j = 1, . . . , 4

If T1i ≤ T2i , Ti = T1i , δi = 1, di = 1 (DWT);
Otherwise, Ti = T2i , δi = 1, di = 0 (SWT) or Ti = T2i , δi = 0, di = 0
(SNT) depending on whether or not Xoi ≤ T2i
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Comparison

Apply the simulated data to both Lindsey and Ryan model (Lindsey
and Ryan, 1993) and the proposed model

Summary statistics

Estimated mean
Bias
Empirical standard error (SE)
Mean of the 1,000 estimated standard errors (SEM)
95% coverage rate (CR) of the regression parameters, β, ψ, and γ,
commonly included in both the Lindsey and Ryan’s model (LR) and the
proposed model (Proposed).
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Simulation results

Table: Estimated mean, bias, empirical standard error (SE), mean of the 1,000
estimated standard errors (SEM), and 95% coverage rate (CR) for the common
parameters, β, ψ, and γ, in LR and proposed models

Parameter True Mean Bias SE SEM CR

LR model
β 3.4185 3.4746 0.0561 0.6781 0.5369 89.8

ψ 0.1689 -0.2360 -0.4049 0.6206 0.5036 85.2

γ 0.6946 0.0179 -0.6767 1.4579 0.8445 67.5

Proposed model

β 3.4185 3.5991 0.1806 0.5866 0.5329 95.7

ψ 0.1689 0.0937 -0.0751 0.5781 0.5207 94.3

γ 0.6946 0.7850 0.0904 0.6909 0.5424 90.2
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Discussion

Propose a three-state model with normal frailty to incorporate the
dependency of tumor onset and death for the current status data

Based on a simulation study, our model was better than LR model in
terms of summary statistics and the coverage rate

According to the results not reported in Table 2, the coverage rate of
the lethality parameter in LR model was 53.1% assuming the true
value of 1 and that of τ were 81.4%. This low coverage rate of τ may
be caused by lack of distinct information of DNT or DWT animals

In E-step, the Gauss-Hermite algorithm was used to approximate the
functionals of the random frailty, but MCMC sampling technique can
be applied
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