The Analysis of Tumorigenicity Data using a Normal Frailty Effect

Jinheum Kim¹

¹Department of Applied Statistics, University of Suwon

May 21, 2010

Outline

- Interval censoring
- Issues on the current status data
- Three-state model with normal frailty
- Likelihood
- EM estimation
- Simulation results
- Discussion

Interval censoring

- Four types of interval-censored data
 - Case I interval-censored data, called by current status data
 - Case II interval-censored data, in short interval-censored data
 - Doubly interval-censored data (cf Double censoring)
 - Panel count data (cf Recurrent event data)

•

 <u>Reference:</u> Sun(2006, The Statistical Analysis of Interval-censored Failure Time Data)

Current status data

- T_i , $i = 1, \ldots, n$: Survival time
- Data: $\{(C_i, I(T_i \leq C_i), \mathbf{Z}_i); i = 1, ..., n\}$
 - C_i : Examination (Observation) time such as death time or sacrifice time
 - Only left-censored, $T_i \in (0, C_i)$, or right-censored, $T_i \in (C_i, \infty)$
 - Assume T_i and C_i are independent given covariate \mathbf{Z}_i
- Eg., Tumorigenicity experiments

Issues

- When the examination time would be predetermined, the independent assumption is appropriate
- BUT, in tumorigenicity study, the censoring happens either at death or at sacrifice
- When examination is made with naturally dead animal, this death may be related with tumor onset and the independence assumption is not valid any more

Background

- With non-lethal tumor, death would be independent with tumor onset
- For lethal tumor, two cases can be considered:
 - With a rapidly lethal tumor, the death time follows the onset of tumor and log-rank test using death times is used to compare treatments on tumor onset time
 - With an intermediate lethal tumor, the correlation between the tumor onset time and death time is not known

0

Reference: Lagakos and Louis (1988, Applied Statistics)

Three-state model

- Three states: Health, tumor, and death
- The lethality was measured by the ratio of two death hazards, i.e., death with tumor and death without tumor, and was composed of baseline lethality and treatment lethality.

•

 <u>Reference:</u> Lindsey and Ryan (1993, Applied Statistics; 1994, Environmental Health Perspective Supplements) and French and Ibrahim (2002, Biometrics)

Schematic diagram

Figure: Three-state illness model

Our way

- Estimate the effect of treatment on the tumor onset time and the death time considering the possible correlation between tumor onset and death
- Introduce a normal frailty to incorporate the dependency

Data

- X : Tumor onset time
 - NOT directly observed, instead, only know whether or not tumor onset occurred before an examination time (T)
 - $\Delta = 1$ if X < T and $\Delta = 0$ otherwise
- For the examination time, there are two possible cases: natural death time (T_1) and sacrifice time (T_2)
 - $T = min(T_1, T_2)$: Observable examination time
 - $D = I(T_1 < T_2)$
 - Assume that T_2 is independent of X and T_1
- Observable data: $\{(t_i, \delta_i, d_i, \mathbf{z}_i); i = 1, \ldots, n\}$

Three models

• Hazard rate of tumor onset:

$$\alpha_i(x|\mathbf{z}_i, r_i) = \alpha_0(x) \exp(\beta' \mathbf{z}_i + r_i), r_i \sim N(0, \sigma^2)$$
 (1)

• Hazard rate of death without tumor onset:

$$\tilde{\lambda}_i(t|\mathbf{z}_i) = \lambda_0(t) \exp(\psi'\mathbf{z}_i)$$
 (2)

• Hazard rate of death with tumor onset:

$$\lambda_i(t|\mathbf{z}_i, r_i) = \lambda_0(t) \exp\{(\psi + \gamma)'\mathbf{z}_i + \tau r_i\}$$
 (3)

- ullet au: A role to connect tumor onset and death due to frailty
 - If $\tau > 0$, an animal with higher frailty on tumor onset will result in earlier death
- Unlike Lindsey and Ryan (1993, 1994) and French and Ibrahim (2002), our model assumes that the lethality due to tumor onset is animal-specific rather than same for all animals

Preliminary results

Table: Estimated mean, bias, empirical standard error (SE), mean of the 1,000 estimated standard errors (SEM), and 95% coverage rate (CR) for the parameters β, ψ, γ , and η (exp(η): lethality parameter) in LR model (Lindsey and Ryan, 1993) with sacrifice times of 12, 18, and 33

Parameter	True	Mean	Bias	SE	SEM	CR
β	3.2463	3.4574	0.0650	0.6666	0.5364	92.3
ψ	-0.1493	-0.1467	0.0173	0.5483	0.5215	95.7
γ	-3.4780	-2.5003	0.2811	1.3463	0.7943	65.6
η	4.7831	3.7605	0.2138	1.2167	0.5641	49.6

 \bullet The coverage rates of γ and η among the regression parameters in LR model are fairly lower than a nominal level due to ignoring the dependency

Four possible factors: With no tumor cases

• For sacrifice with no tumor (SNT), $(\delta_i, d_i) = (0, 0)$,

$$L_{i1} = \exp\{-\int_0^{t_i} \{\alpha_i(u|\mathbf{z}_i,r_i) + \tilde{\lambda}_i(u|\mathbf{z}_i)\}du\};$$

• For death with no tumor (DNT), $(\delta_i, d_i) = (0, 1)$,

$$L_{i2} = \tilde{\lambda}_i(t_i|\mathbf{z}_i) \exp\{-\int_0^{t_i} \{\alpha_i(u|\mathbf{z}_i,r_i) + \tilde{\lambda}_i(u|\mathbf{z}_i)\}du\};$$

Four possible factors: With tumor cases

• For sacrifice with tumor (SWT), $(\delta_i, d_i) = (1, 0)$,

$$L_{i3} = \int_0^{t_i} f_X(u|\mathbf{z}_i, r_i) \tilde{S}_T(u|\mathbf{z}_i) \frac{S_T(t_i|\mathbf{z}_i, r_i)}{S_T(u|\mathbf{z}_i, r_i)} du;$$

- S_X, \tilde{S}_T and S_T : Survival functions corresponding to the three models respectively
- $f_X(x|\mathbf{z}_i, r_i) = \alpha_i(x|\mathbf{z}_i, r_i)S_X(x|\mathbf{z}_i, r_i)$
- For death with tumor (DWT), $(\delta_i, d_i) = (1, 1)$,

$$L_{i4} = \lambda_i(t_i|z_i,r_i) \int_0^{t_i} f_X(u|\mathbf{z}_i,r_i) \tilde{S}_T(u|\mathbf{z}_i) \frac{S_T(t_i|\mathbf{z}_i,r_i)}{S_T(u|\mathbf{z}_i,r_i)} du$$

Complete data

- Complete data: $\{(x_i, t_i, \delta_i, d_i, \mathbf{z}_i); i = 1, \dots, n\}$
 - x_i : Tumor onset time
- Based on the complete data, L_{i3} and L_{i4} can be represented as, respectively,

$$\begin{split} \tilde{L}_{i3} &= \alpha_i(\mathbf{x}_i|\mathbf{z}_i, r_i) \exp\{-\int_0^{\mathbf{x}_i} \{\alpha_i(u|\mathbf{z}_i, r_i) + \tilde{\lambda}_i(u|\mathbf{z}_i)\} du \\ &- \int_{\mathbf{x}_i}^{t_i} \lambda_i(u|\mathbf{z}_i, r_i) du\}; \\ \tilde{L}_{i4} &= \lambda_i(t_i|\mathbf{z}_i, r_i) \alpha_i(\mathbf{x}_i|\mathbf{z}_i, r_i) \exp\{-\int_0^{\mathbf{x}_i} \{\alpha_i(u|\mathbf{z}_i, r_i) + \tilde{\lambda}_i(u|\mathbf{z}_i)\} du \\ &- \int_{\mathbf{x}_i}^{t_i} \lambda_i(u|\mathbf{z}_i, r_i) du\} \end{split}$$

Likelihood

• Complete-data-based likelihood:

$$L_{c} = \prod_{i=1}^{n} L_{i1}^{(1-\delta_{i})(1-d_{i})} L_{i2}^{(1-\delta_{i})d_{i}} \tilde{L}_{i3}^{\delta_{i}(1-d_{i})} \tilde{L}_{i4}^{\delta_{i}d_{i}} \phi(r_{i}|\sigma^{2})$$

•
$$\phi(r|\sigma^2) = (2\pi\sigma^2)^{-1/2} \exp\{-(2\sigma^2)^{-1}r^2\}$$

Piecewise exponential model

• Following Lindsey and Ryan (1993, 1994) and French and Ibrahim (2002), suppose that there are J time points, s_1, \ldots, s_J , and that

$$lpha_0(t) = lpha_{0j}, \quad t \in I_j = (s_{j-1}, s_j], j = 1, \dots, J;$$

$$\lambda_0(t) = \lambda_{0j}, \quad t \in I_j$$

Likelihood

• Complete-data-based log-likelihood: Letting $\theta = (\alpha', \lambda', \beta, \psi, \gamma, \tau, \sigma^2)', \ \theta_1 = (\alpha', \beta)', \ \theta_2 = (\lambda', \psi, \gamma, \tau)', \ \text{and}$ $\theta_3 = \sigma^2,$ $l_c = \log(L_c) = l_{\theta_1} + l_{\theta_2} + l_{\theta_3}$

•
$$I_{\theta_1} = \sum_{j=1}^{J} \{N_j^T \log \alpha_j - \alpha_j \sum_{i=1}^{n} \exp(\beta' \mathbf{z}_i + r_i) T_{ij}^{NT}\} + \sum_{i=1}^{n} \mathbf{z}_i'(\delta_i \beta);$$

- •
- $l_{\theta_2} = \sum_{j=1}^{J} \{ (a_j + b_j) \log \lambda_j \lambda_j \sum_{i=1}^{n} \{ \exp(\psi' \mathbf{z}_i) T_{ij}^{NT} + \exp((\psi + \gamma)' \mathbf{z}_i + \tau r_i) T_{ij}^{T} \} \} + \sum_{i=1}^{n} \{ \mathbf{z}_i' (d_i \psi + \delta_i d_i \gamma) + (\delta_i + \tau d_i \delta_i) r_i \};$
- ٠
- $l_{\theta_3} = \sum_{i=1}^n \log \phi(r_i | \sigma^2)$

Two kinds of missing terms: Unobservable tumor onset time

- $a_j = \sum_{i=1}^n (1 \delta_i) d_{ij} d_i$: Number of death without tumor in I_j • $d_{ij} = I(t_i \in I_j)$
- $b_j = \sum_{i=1}^n \delta_i d_{ij} d_i$: Number of death with tumor in I_j
- a_i and b_i : Known, BUT
- N_j^T : Number of subjects with tumor in interval I_j
- T_{ij}^{NT} and T_{ij}^{T} : Time the *i*th subject spends with no tumor and with tumor in interval I_i
- \bullet N_j^T , T_{ij}^T , and T_{ij}^{NT} : NOT known
- According to Lindsey and Ryan (1993, 1994), calculate $E(N_j^T | \mathcal{O}, \theta)$, $E(T_{ii}^{NT} | \mathcal{O}, \theta)$ and $E(T_{ii}^T | \mathcal{O}, \theta)$

Two kinds of missing terms: Frailty

• Conditional on observed data, $\mathcal{O} = \{O_i = (t_i, \delta_i, d_i, \mathbf{z}_i), i = 1, \dots, n\},\$

$$f_{R_i|\mathcal{O}}(r|\boldsymbol{\theta}) = \frac{L_i(r;\boldsymbol{\theta})}{\int_{-\infty}^{\infty} L_i(u;\boldsymbol{\theta}) du}$$

- $L_i(r; \theta) = L_{i1}^{(1-\delta_i)(1-d_i)} L_{i2}^{(1-\delta_i)d_i} L_{i3}^{\delta_i(1-d_i)} \tilde{L}_{i4}^{\delta_i d_i} \phi(r|\sigma^2)$
- Employ the Gauss-Hermite method for calculating the functionals of frailty such as $E(R_i|\mathcal{O},\theta)$, $E(R_i^2|\mathcal{O},\theta)$, $E\{\exp(R_i)|\mathcal{O},\theta\}$, $E\{\exp(\tau R_i)|\mathcal{O},\theta\}$ etc

EM Procedure

- Start with $\theta_{j}^{(0)}, j = 1, 2, 3$
- ullet For $k=0,1,\ldots,$ update $oldsymbol{ heta}_j^{(k)}$ through

$$\boldsymbol{\theta}_{j}^{(k+1)} = \boldsymbol{\theta}_{j}^{(k)} - \left\{ \frac{\partial^{2} Q_{j}(\boldsymbol{\theta}_{j} | \boldsymbol{\theta}_{j}^{(k)})}{\partial \boldsymbol{\theta}_{j} \partial \boldsymbol{\theta}_{j}^{\prime}} \right\}_{\boldsymbol{\theta}_{j}^{=} \boldsymbol{\theta}_{j}^{(k)}}^{-1} \left\{ \frac{\partial Q_{j}(\boldsymbol{\theta}_{j} | \boldsymbol{\theta}_{j}^{(k)})}{\partial \boldsymbol{\theta}_{j}} \right\}_{\boldsymbol{\theta}_{j} = \boldsymbol{\theta}_{j}^{(k)}}, j = 1, 2, 3$$

- $\bullet \ \ Q_j(\theta_j|\theta_j^{(k)}) = \mathsf{E}_{\theta_j^{(k)}}(l_{\theta_j}|\mathcal{O}), j = 1, 2, 3$
- ullet Iterate E-M steps until $||oldsymbol{ heta}^{(k+1)} oldsymbol{ heta}^{(k)}||_{\infty} < \epsilon$
 - $\theta^{(r)} = (\theta_1^{(r)'}, \theta_2^{(r)'}, \theta_3)'$
 - $\bullet ||\cdot||_{\infty}$: Maximum norm

Variance estimation

ullet Define negative Hessian matrix as a block diagonal matrix, Q, with elements,

$$-\frac{\partial^2 Q_j(\theta_j|\theta_j^{(s)})}{\partial \theta_j \partial \theta_j'}\big|_{\theta_j=\theta_j^{(s)}}, j=1,2,3$$

- SE of the respective estimate is given by the square root of corresponding diagonal element of inverse of Q
- Another estimator: Louis' method, BUT analytically cumbersome as pointed out by Lindsey and Ryan (1993)

Simulation setup: Design parameters

- Binary covariate
 - Low-dose animals: $z_i = 0, i = 1, ..., 130$;
 - High-dose animals: $z_i = 1, i = 131, ..., 225$
- Frailty: $r_i \sim N(0, 0.3666^2), i = 1, \dots, 225$
- Baseline hazard rates
 - \bullet $\alpha_{01} = 0.0006$ and $\lambda_{01} = 0.0017$ on $I_1 = (0, 13]$;
 - $\alpha_{02} = 0.0018$ and $\lambda_{02} = 0.0069$ on $I_2 = (13, 19]$;
 - $\alpha_{03} = 0.0243$ and $\lambda_{03} = 0.0721$ on $I_3 = (19, 25]$;
 - $\alpha_{04} = 0.0001$ and $\lambda_{04} = 0.2734$ on $I_4 = (25, 33]$
- ullet Set $eta=3.4185,\ \psi=0.1689,\ \gamma=0.6946,\ ext{and}\ au=3.8467$
- Sacrifice times
 - $T_{2i} = 13, i = 1, \ldots, 16; 19, i = 17, \ldots, 105; 33, i = 106, \ldots, 130;$
 - $T_{2i} = 13, i = 131, \dots, 145; 19, i = 146, \dots, 207; 33, i = 208, \dots, 225$

Simulation setup: Tumor onset and death times

- Step 1: Generate X_{oi} , from model (1) with $\alpha_0(t) = \alpha_{0i}$ on $I_i, i = 1, \ldots, 4$
- Step 2: Generate \tilde{T}_{1i} , from model (2) with $\lambda_0(t) = \lambda_{0i}$ on $I_i, i = 1, \ldots, 4$
- Step 3: If $\tilde{T}_{1i} < X_{0i}$.
 - Go to Step 4:
 - Otherwise, go to Step 5
- Step 4: If $\tilde{T}_{1i} < T_{2i}$,
 - $T_i = T_{1i}, \delta_i = 0, d_i = 1$ (**DNT**);
 - Otherwise. $T_i = T_{2i}$, $\delta_i = 0$, $d_i = 0$ (**SNT**)
- Step 5: Conditional on X_{oi} , generate T_{1i} from piecewise exponential distribution with $\lambda_0(t) = \lambda_{0i}$ on $I_i, i = 1, \dots, 4$
 - If $T_{1i} < T_{2i}$, $T_i = T_{1i}$, $\delta_i = 1$, $d_i = 1$ (**DWT**);
 - Otherwise, $T_i = T_{2i}, \delta_i = 1, d_i = 0$ (**SWT**) or $T_i = T_{2i}, \delta_i = 0, d_i = 0$ (**SNT**) depending on whether or not $X_{0i} < T_{2i}$

Comparison

- Apply the simulated data to both Lindsey and Ryan model (Lindsey and Ryan, 1993) and the proposed model
- Summary statistics
 - Estimated mean
 - Bias
 - Empirical standard error (SE)
 - Mean of the 1,000 estimated standard errors (SEM)
 - 95% coverage rate (CR) of the regression parameters, β, ψ , and γ , commonly included in both the Lindsey and Ryan's model (LR) and the proposed model (Proposed).

Simulation results

Table: Estimated mean, bias, empirical standard error (SE), mean of the 1,000 estimated standard errors (SEM), and 95% coverage rate (CR) for the common parameters, β, ψ , and γ , in LR and proposed models

Parameter	True	Mean	Bias	SE	SEM	CR			
	<u>LR model</u>								
β	3.4185	3.4746	0.0561	0.6781	0.5369	89.8			
ψ	0.1689	-0.2360	-0.4049	0.6206	0.5036	85.2			
γ	0.6946	0.0179	-0.6767	1.4579	0.8445	67.5			
	Proposed model								
β	3.4185	3.5991	0.1806	0.5866	0.5329	95.7			
ψ	0.1689	0.0937	-0.0751	0.5781	0.5207	94.3			
γ	0.6946	0.7850	0.0904	0.6909	0.5424	90.2			

Discussion

- Propose a three-state model with normal frailty to incorporate the dependency of tumor onset and death for the current status data
- Based on a simulation study, our model was better than LR model in terms of summary statistics and the coverage rate
- According to the results not reported in Table 2, the coverage rate of the lethality parameter in LR model was 53.1% assuming the true value of 1 and that of τ were 81.4%. This low coverage rate of τ may be caused by lack of distinct information of DNT or DWT animals
- In E-step, the Gauss-Hermite algorithm was used to approximate the functionals of the random frailty, but MCMC sampling technique can be applied

Thanks to:

Chung Mo Nam (Yonsei University College of Medicine), Yang-Jin Kim (Sookmyung Women's University), Youn Nam Kim (Yonsei University Graduate School of Public Health), Eun Hee Choi (Yonsei University College of Medicine)