Sib transmission and disequilibrium tests for linkage using multiple highly linked markers

Jinheum Kim

jinhkim@suwon.ac.kr

Department of Applied Statistics University of Suwon

Contents

- Allele-based sib TDT: review
- Propose omnibus tests based on haplotype
- Simulation studies
- Concluding remarks

Association study

- Goal: test for association between genetic markers and disease-susceptibility genes related to a trait
- Sources: causal association, LD, confounding
- Two ways: population-based case-control study or family-based TDT
 - \rightarrow TDT: Not affected by population stratification unlike case-control study, *i.e.* free from a chance false positive
- Requirement for TDT: proband's marker genotype
 + parental marker genotypes

An example of spurious association

	Pop'n 1				Pop'n 2			
Sample	M_1	M_2	Total		M_1	M_2	Total	
Case	9 1 10		•	25	25	50		
Control	81 9 90		90		25	25	50	
Total	90	10	100		50	50	100	
	$\chi^2 = 0(1.000)$			1	χ^2	= 0(1.	.000)	

$$\downarrow (1:1)$$

	Combined					
Sample	M_1	M_2	Total			
Case	34	26	60			
Control	106	34	140			
Total	140	60	200			
$\chi^2 = 7.26(0.007)$						

Sib TDT

- When does it need? late-onset diseases
 - → possibly parental data not available
 - → sibling's data available instead
- Minimum requirements
 - (i) at least one unaffected sib additionally
 - → able to compare the marker dist'n bet'n two population of the affected and the unaffected
 - (ii) two sibs' marker genotype not identical
 - → if not, noninformative

Tests related to sib TDT

- Curtis(AHG, 1997)
- Boehnke & Langefeld (AJHG, 1998)
- Spielman & Ewens (AJHG, 1998)
- Hovath & Laird (AJHG, 1998)

Spielman & Ewens' Test

- With two-allele marker for simplicity
- Idea: compare the marker allele frequencies bet'n the affected and unaffected sibs
- Data structure, given $N_f^a, N_f^u, t_{f1}, t_{f2}, t_{f3}$

	Freq			
Affection status	M_1M_1	M_1M_2	M_2M_2	Total
Affected	x_{f1}	x_{f2}	x_{f3}	N_f^a
Unaffected	y_{f1}	y_{f2}	y_{f3}	N_f^u
Total	t_{f1}	t_{f2}	t_{f3}	N_f

Test statistic

- O_f =# of M_1 allele among the affected sibs within the sibship f
- $E_f = \mathsf{E}_0(O_f), V_f = \mathsf{Var}_0(O_f)$ under H_0 : no linkage
- $z^2 = \left(\sum_f O_f \sum_f E_f\right)^2 / \sum_f V_f \sim \chi_1^2$ asymptotically under H_0

Remarks

- A kind of stratified statistic to adjust the confounding factor which is the varying genotype frequencies from sibship to sibship
- $\mathbf{x}_f' = (x_{f1}, x_{f2}, x_{f3})$ follows a conditionally multi-hypergeometric distribution under H_0
- O_f is a linear combination of \mathbf{x}_f , *i.e.* $\mathbf{x}_f'\mathbf{c}$, $\mathbf{c} = (2, 1, 0)'$ $\rightarrow A_f, V_f$ are calculable through the distint of \mathbf{x}_f

Why haplotype-based? But ...

- (Def'n) Haplotype set of alleles on a chromosome
- Many markers has been genotyped within a very short physical distance
- More informative
- Haplotype information is not usually available from genotype information
 - ightarrow For example, when the number of heterozygous loci equals c, the number of possible haplotype pairs corresponds to 2^{c-1}

Notations

- $G_1, \ldots, G_k (k = 3^c)$: distinct genotypes in case 2-allele markers at c loci,
- x_{fg}, y_{fg}, t_{fg} : # of the affected sibs, the unaffected sibs, and total sibs with genotype G_g within the fth sibship, $f = 1, \ldots, F; g = 1, \ldots, k$
- $h_1, \ldots, h_l (l=2^c)$: distinct haplotypes
- r_{fh}, s_{fh} : # of sibs having haplotype pairs hh and $hk(k \neq h)$ within the fth sibship, $f = 1, \ldots, F; h = h_1, \ldots, h_l$

Data structure

● Data structure, given $N_f^a, N_f^u, \mathbf{t}_f' = (t_{f1}, \dots, t_{fk})$

	Freq			
Affection status	G_1		G_k	Total
Affected	x_{f1}		x_{fk}	N_f^a
Unaffected	y_{f1}	• • •	y_{fk}	N_f^u
Total	t_{f1}		t_{fk}	N_f

Reconstruction of data structure

- When the phases of genotype are resolved, r_{fh}, s_{fh} are deterministic
- Reconstruct l sub-tables based on haplotypes, e.g., for haplotype h,

Affection status	hh	$hk(k \neq h)$	$pq(p, q \neq h)$	Total
Affected				N_f^a
Unaffected				N_f^u
Total	r_{fh}	s_{fh}	$N_f - r_{fh} - s_{fh}$	N_f

Proposed test statistic

- Idea: apply Spielman & Ewens' test to the reconstructed table sequentially for each haplotype
- O_{fh} : # of haplotype h in the affected sibs within the fth sibship, $f = 1, \ldots, F; h = h_1, \ldots, h_l$
- $E_{fh} = \mathsf{E}_0(O_{fh}), V_{fh} = \mathsf{Var}_0(O_{fh})$ under H_0 : no linkage
- For each h,

$$z_h^2 = \left(\sum_f O_{fh} - \sum_f E_{fh}\right)^2 / \sum_f V_{fh} \sim \chi_1^2$$
 asymptotically under H_0

Omnibus tests

- $T_1 = \max_h |z_h|$ → Bonferroni's correction needs for multiple tests
- $T_2 = (h-1)/h \sum_h z_h^2 \sim \chi_{h-1}^2$ asymptotically under H_0
 - → Conservative; ignore dependency bet'n haplotypes among sibs within a sibship

Permutation procedure

- Step 0: calculate T, with value T_0 , for the given data set
- Step 1: for each sibship, randomly permute affection status
- Step 2: calculate T on this pseudo-sample and determine whether it is more extreme than T_0
- Step 3: repeat steps 1 and 2 N times and estimate the P value as the proportion of times that T is more extreme than T₀
- Reference: Monks et al. (AJHG, 1998)

Haplotype reconstruction

- When required?
 - more than 2 heterozygous loci exist
- In-silico methods
 - Clark algorithm (Clark, MBE, 1990)
 - EM algorithm (Excoffier & Slatkin, MBE, 1995)
 - Gibbs sampling method (Stephens et al., AJHG,2001)
 - Partition-ligation(Niu et al, AHJG, 2002)

Modified reconstruction table

- When the phases of genotype are unresolved, r_{fh}, s_{fh} are probabilistic
- \mathcal{H}_g : set of all ordered haplotype pairs consistent with genotype $G_g, g = 1, \dots, k$
- f_h : sample frequency of haplotype $h, h = h_1, \ldots, h_l$
- Estimated column marginals in reconstructed table
 k

$$\hat{r}_{fh} = \sum_{g=1}^{n} t_{fg} \{ \sum_{(s,t) \in \mathcal{H}_g} w_{stg} I(s=h, t=h) \},$$

$$\hat{s}_{fh} = \sum_{g=1}^{k} t_{fg} \left[\sum_{(s,t) \in \mathcal{H}_g} w_{stg} \{ I(s=h, t=k) + I(s=k, t=h) \} \right],$$

$$D_g = \sum_{(s,t)\in\mathcal{H}_g} f_s f_t, \ w_{stg} = f_s f_t / D_g, \ s,t = h_1,\dots,h_l$$

Simulation studies: design pars

Types of haplotype frequencies

Туре	Pop'n	Frequencies of $(h_1, h_2, h_3, h_4, h_5, h_6, \frac{h_7, h_8}{})$
I	1	(0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125)
	2	(0.250,0.000,0.250,0.000,0.250,0.000,0.250,0.000)
Ш	1	(0.343,0.147,0.147,0.063,0.147,0.063,0.063,0.027)
	2	(0.490,0.000,0.210,0.000,0.210,0.000,0.090,0.000)

- # of sibship(F)=50, 100(level); 200(power)
- # of sibs within each sibship(s)=2, 5
- baseline risk=0.1 for pop'n 1; br= 0.2, 0.3, 0.4 for pop'n 2
- rr(power)=2, 3, 4, 5
- # of replication=1,000; # of permutation=300

Empirical levels

		F	50				100			
		T	T_1		T_2		T_1		T_2	
Type	br	s	2	5	2	5	2	5	2	5
I	2		.053	.052	.062	.056	.049	.054	.049	.056
	3		.060	.051	.054	.056	.069	.046	.072	.039
	4		.069	.053	.065	.044	.049	.058	.051	.053
П	2		.052	.054	.048	.054	.043	.055	.054	.050
	3		.046	.047	.051	.046	.053	.047	.058	.053
	4		.063	.038	.055	.041	.051	.051	.052	.043

Empirical powers

Concluding remarks

- Extend Spielman & Ewens' test based on haplotype instead of allele
- Modify reconstructed table with conditional probabilities due to haplotype uncertainty
- Robust to population admixture regardless of haplotype dist'n, br, and s
- T_2 is more powerful than T_1
- Alternative approaches: based on $2 \times k$ genotype table $or 2 \times l$ halpotype table

Thank you.