Tests for Linkage and/or Association Between Hypertension and Angiotensinogen(AGT) Gene Based on Haplotypes

Jinheum Kim

jinhkim@suwon.ac.kr

Department of Applied Statistics University of Suwon

Contents

- Allele-based sib TDT: Review
- Haplotype-based sib TDTs
- A real example
- Concluding remarks

Sib TDT

- When does it need? Diseases with late age of onset
 - ⇒ Possibly parental data not available
 - ⇒ Sibling's data available instead
- Minimum requirements
 - (i) At least one unaffected sib additionally
 ⇒ Able to compare the marker distribution between two population of the affected and the unaffected
 - (ii) Two sibs' marker genotypes not identical
 If not, noninformative
- TDT vs. sib TDT
 - Controls: parental vs. unaffected sib(s)

Spielman & Ewens' Test (AJHG, 1998)

- With two-allele marker for simplicity
- Idea: compare the marker allele frequencies between the affected and unaffected sibs
- O_f =# of M_1 allele among the affected sibs within the sibship f
- $E_f = \mathsf{E}_0(O_f), V_f = \mathsf{Var}_0(O_f)$ under H_0 : no linkage
- $z^2 = \left(\sum_f O_f \sum_f E_f\right)^2 / \sum_f V_f \sim \chi_1^2$ asymptotically under H_0

Remarks

- A kind of stratified statistic to adjust the confounding factor which is the varying genotype frequencies from sibship to sibship
- $\mathbf{x}_f' = (x_{f1}, x_{f2}, x_{f3})$ follows a conditionally multivariate hypergeometric distribution under H_0 , where x_{f1}, x_{f2} , and x_{f3} are, respectively, the number of affected sibs who have genotypes M_1M_1, M_1M_2 , and M_2M_2
- O_f is a linear combination of \mathbf{x}_f , *i.e.* $\mathbf{c}'\mathbf{x}_f$, $\mathbf{c}' = (2, 1, 0)$ $\Rightarrow E_f \& V_f$ are calculable through the distribution of \mathbf{x}_f

Remarks

- Explicit forms of $E_f \& V_f$
 - $N_f^a(N_f^u)$ =# of affected(unaffected)sibs within the sibship f
 - r_f =# of sibs who are of genotype M_1M_1 within the sibship f
 - s_f =# of sibs who are of genotype M_1M_2 within the sibship f
 - Null mean

$$E_f = (2r_f + s_f) \frac{N_f^a}{N_f}, \quad N_f = N_f^a + N_f^u$$

Null variance

$$V_f = \left[4r_f(N_f - r_f - s_f) + s_f(N_f - s_f)\right] \frac{N_f^a N_f^a}{N_f^2 (N_f - 1)}$$

Notations

- $G_1, \ldots, G_k (k = 3^c)$: distinct genotypes in case 2-allele markers at c loci,
- $h_1, \ldots, h_l (l=2^c)$: distinct haplotypes
- x_{fg}, t_{fg} : # of the affected sibs and total sibs with genotype G_g within the fth sibship, $f = 1, \ldots, F; g = 1, \ldots, k$
- r_{fh}, s_{fh} : # of sibs having haplotype pairs hh and $hm(m \neq h)$ within the fth sibship, $f = 1, \ldots, F; h = h_1, \ldots, h_l$

Proposed test statistic

- Idea: apply Spielman & Ewens' test for each haplotype whenever the phases of genotype are resolved
 - \Rightarrow How does it possible? $r_{fh} \& s_{fh}$ are deterministic
- O_{fh} : # of haplotype h in the affected sibs within the fth sibship, $f = 1, \ldots, F; h = h_1, \ldots, h_l$
- $E_{fh} = \mathsf{E}_0(O_{fh}), V_{fh} = \mathsf{Var}_0(O_{fh})$ under H_0 : no linkage
- For each h,

$$z_h^2 = \left(\sum_f O_{fh} - \sum_f E_{fh}\right)^2 / \sum_f V_{fh} \sim \chi_1^2$$
 asymptotically under H_0

Two omnibus tests

- $I_1 = \max_{i=1,...,l} |z_{h_i}|$
 - ⇒ Need Bonferroni's correction for multiple tests
 - ⇒ Use Permutation test
- $T_2=(l-1)/l\sum_{i=1}^l z_{h_i}^2\sim \chi_{l-1}^2$ asymptotically under H_0
 - ⇒ Conservative
 - ⇒ Why? Ignore dependency between haplotypes among sibs within a sibship

Permutation test procedure

- Step 0: calculate T, with value T_0 , for the given data set
- Step 1: for each sibship, randomly permute affection status
- Step 2: calculate T on this pseudo-sample and determine whether it is more extreme than T_0
- Step 3: repeat steps 1 and 2 B times and estimate the P value as the proportion of times that T is more extreme than T_0
- Reference: Monks et al. (AJHG, 1998)

Haplotype reconstruction

- When required?
 - more than 2 heterozygous loci exist
- In-silico methods
 - Clark algorithm (Clark, MBE, 1990)
 - EM algorithm (Excoffier & Slatkin, MBE, 1995)
 - Gibbs sampling method (Stephens et al., AJHG,2001)
 - Partition-ligation(Niu et al, AHJG, 2002)

Modified proposed tests

- When the phases of genotype are unresolved, r_{fh}, s_{fh} are probabilistic
- \mathcal{H}_g : set of all ordered haplotype pairs consistent with genotype $G_q, g = 1, \dots, k$
- f_h : estimated frequency of haplotype $h, h = h_1, \dots, h_l$
- $D_g = \Pr(G_g|f_h, h = h_1, \dots, h_l) = \sum_{(s,t) \in \mathcal{H}_g} f_s f_t$ under random mating & HWE
- $w_{stg} = \Pr(\mathsf{Haplotype\ pair} = (s,t)|G_g) = f_s f_t/D_g$

Modified proposed tests

Modified O_{fh}

$$\hat{O}_{fh} = 2\sum_{g=1}^{k} x_{fg} \{ \sum_{(s,t) \in \mathcal{H}_g} w_{stg} I(s=h, t=h) \}$$

$$+\sum_{g=1}^{k} x_{fg} \left[\sum_{(s,t)\in\mathcal{H}_q} w_{stg} \{ I(s=h, t=m, m \neq h) + I(s=m, t=h, m \neq h) \} \right]$$

ullet Modified r_{fh}

$$\hat{r}_{fh} = \sum_{g=1}^{k} t_{fg} \{ \sum_{(s,t) \in \mathcal{H}_q} w_{stg} I(s=h, t=h) \}$$

ullet Modified s_{fh}

$$\hat{s}_{fh} = \sum_{g=1}^{\kappa} t_{fg} \left[\sum_{(s,t) \in \mathcal{H}_g} w_{stg} \{ I(s=h, t=m, m \neq h) + I(s=m, t=h, m \neq h) \} \right]$$

A real example

- Data: 92 sibship adopted from Yonsei Cardiovascular Genome Center
- Phonotype: Hypertension
- Purpose: Test for linkage between AGT gene and hypertension
- Materials: 4 SNPs \Rightarrow G-217A(s_1), A-20C(s_2), G-6A(s_3), M235T(s_4)
- Empirical p-values based on 10,000 times of permutation

Diagram of AGT gene

Schematic diagram of the human AGT gene illustrating the location of 4 diallelic polymorphisms (1q42-3)

Estimated haplotype frequencies

SNP(s)										
(s_1,s_2,s_3,s_4)		(s_1,s_3,s_4)		(s_3,s_4)		s_3				
Haplotype	f_h	Haplotype	f_h	Haplotype	f_h	Haplotype	f_h			
AAAT	-	AAT	-	AT	-	А	0.8281			
AAAC	0.1983	AAC	0.2031	AC	0.8281					
AAGT	-	AGT	-	GT	0.1641	G	0.1719			
AAGC	-	AGC	-	GC	0.0078					
ACAT	-									
ACAC	-									
ACGT	-									
ACGC	-									
GAAT	-	GAT	-							
GAAC	0.4655	GAC	0.6250							
GAGT	0.1810	GGT	0.1641							
GAGC	0.0086	GGC	0.0078							
GCAT	-									
GCAC	0.1466									
GCGT	-									
GCGC	-									

Empirical p-values

			T_1		T_2	T_2	
#(SNPs)	SNPs	F	observed	p-value	observed	$p{ m -}{\sf value}$	
4	s_1, s_2, s_3, s_4	26(16)	1.342	0.538	4.382	0.420	
3	s_1, s_2, s_3	26(15)	1.342	0.559	2.796	0.475	
	s_1,s_2,s_4	28(17)	1.087	0.669	2.337	0.585	
	s_1,s_3,s_4	28(15)	1.357	0.370	4.042	0.295	
	s_2,s_3,s_4	26(11)	1.342	0.461	3.982	0.312	
2	s_1, s_2	35(19)	0.662	0.836	0.621	0.795	
	s_1,s_3	28(14)	1.286	0.424	2.400	0.403	
	s_1,s_4	31(16)	1.302	0.373	2.460	0.373	
	s_2,s_3	26(10)	1.342	0.479	2.300	0.304	
	s_2,s_4	28(12)	1.087	0.525	1.859	0.502	
	s_3,s_4	28(9)	1.357	0.240	3.124	0.236	
1	s_1	38(13)	0.176	1.000	0.031	1.000	
	s_2	35(12)	0.494	0.775	0.244	0.775	
	s_3	28(7)	1.151	0.334	1.324	0.334	
	s_4	44(11)	1.109	0.382	1.230	0.382	

Concluding remarks

- Extend Spielman & Ewens' test based on haplotype instead of allele
- Modify sib TDTs with conditional probabilities due to haplotype uncertainty
- Lack of efficient sample size, 7 to 16 sibship among 92 sibship
- More significant when using two SNPs, G-6A & M235T, than when using three(G-217A additionally) or all four SNPs
- Develop a test including covariances between haplotypes among sibs within a sibship

Thank you.