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Why discretizing a continuous covariate?

@ Simplest interpretation

o eg, in Cox model with a binary covariate, exp(f3), interpreted as the
relative risk

@ Interested in identification of a therapeutic threshold for clinical use
and treatment decisions

J. Kim (Univ Suwon) 2012 IBC Aug-30-2012 3/26



Introduction

Two approaches

@ Based on historical data or or based on a split into groups at a
predetermined percentile of the continuous covariate
= “Data-oriented approach”

@ Split into groups based on either the largest value of the likelihood or
the largest value of two-sample test statistic after a search of possible

cutpoints

= "Outcome-oriented approach”
@ Possibly lead to an inflated type-l error due to multiple testing
@ Correction needs to be applied to obtain the correct type-l error
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Review: outcome-oriented approach

@ Jespersen (1986): base an adjusted test on the maximum value of the
score statistic

@ Contal & O'Quigley (1999): modify the log-rank test statistic

@ Lausen & Schumacher (1992, 1996): propose a standardized test
statistic for the two-sample problem with groups defined by a
threshold parameter

@ Klein & Wu (2004): extend the Contal & O'Quigley’s approach to
the AFT model and the Cox model with additional covariates
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Motivating data

@ The 1965 lung cancer patients received a tumor removal surgery at
Seoul Samsung Hospital in Korea from September 1994 to December
2005

@ Event of interest: relapse, competing risk(s): death, prognostic factor:
tumor size at surgery

@ Want to split the patients into two groups such as a high risk group
and a low risk group to relapse to apply different treatment to each
group
= extend the Contal & O’Quigley's approach to the competing risks
model through the Gray's statistic (1988)
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Notation

@ Observed data: {(T; = X;AYiNGC,6i,Z), i=1,...,n}
o X;(Y;, or G) : event time of interest(time of competing risks or
censoring time)
@ 0; : 1(event occurred), 2(competing risks occurred), 0(censored)
@ Z; : prognostic factor

@ t(1) < tz) <--- <t : times when an event of interest occurred
® ti1,...,tim, : censored times or failed times due to competing risks in
[t(,-), t(i—i—l))’ i=0,1,..., k, when to) = 0 and f(k+1) = 00
® dg; : the number of events of interest in group g at time t;),
g=01i=1...k
o di=doi + dij
@ rgi : the number at risk in group g at time t;

9 1= rj+ ni
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Gray's statistic

@ F4(t) : cumulative incidence function(CIF) for the event of interest in
group g at time t
@ S,(t) : survival function of being free of any event in group g at time
t
o Fu(t)= Zi:t(,)gtgg(t(i—l))% : estimated CIF in group g at time t
o Wy = w : correction factor in group g at time ;)
e (ti—1))
0 Fpi = %rgi = Wgirg : adjusted rg;
o Fj =Toi + Fj
o U = Zf-;l(dl,- — d,-%") : Gray's statistic in two-sample case
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Proposed method in competing risks model

Linear rank statistic in competing risks model

° CDg'), e CDSI,) : 0 if each subject failed at t(;) belongs to group 0, and
1 otherwise

® ®j1,..., Dy, : 0if each subject censored or failed due to competing
risks in [t(, t(i+1)) belongs to group 0, and 1 otherwise

@ Fori=1,... k,let

,- e =1 (o) =0
a():]-_zdh ( f )Wlhj_ ( ! )W0h7 l:17"'7di7
I A
h=1
and
(e =1 I(®; =0
AU=—Zdh( - )Wlh;rh S& )WOhaJ'ZL.--,m;
h=1

Consider a linear rank statistic

k d; ) ) m;j
v=>" a3 Ay0p)
i=1 =1

i j=1
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Proposed method in competing risks model

Equivalence of linear rank statistic & the Gray's statistic

v
il (@ = 1wy + 10 = 0) W01 1(®y; = wiy + 1(d1j = 0)wpy
=> (1-d . Z o . @35
=1 n n
da () _ () _ (2) _ () _
(@} = L)wyg + 1(P;” = 0)wp (@} = L)wyip + (P} = 0)wpo 2
+> (1—d—1 . L —dy—1 ! )
= 1 )
2 [(®2j = )wiy + [(P2j = 0)woy [(®2j = 1)wiz + I(P2j = 0)wpp
~S {d ) - j tdy 3] j Yoo
1 P
+ “ee +
di (k) (k) )
I( = Ljwiy + /( 0)wo1 1(®;7 = L)wyx + 1( 0)wok
+>0 a1 dy—1 = o)
=1 n "k
ok (@ = wir + 1(Ph; = 0)woy 1(®y; = Dwiy + 1(Pg; = 0)woi
=D {h—~ ~ s o — — s 3Oy
= 5} i
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Proposed method in competing risks model

Equivalence of linear rank statistic & the Gray's statistic
dp dy dy
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Proposed test approach

o WLOG, Zy < 2, < --- < Z, : ordered prognostic factors
@ For a given cutpoint u, gi = I(Z; > p), i.e., all subjects having Z;
greater than u belong to group 1, and 0 otherwise
o As pu, take 71, 2>, ..., and Z,, sequentially
® S,:1,5u2,..-,5un : Gray-statistic-type scores of Ty, Tp,..., T,
associated with the ranked prognostic factors
@ Under Hy that X & Z are independent and random censoring,

® S,:1,5u2,.--,5un are exchangeable

o 27:1 Suii = 0
@ The Noether's condition is satisfied:

maxi<i<n |5,u:i|

Z:?:l SEL:I'

—0
in probability
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Proposed test approach

@ Define a process

ZEn:q S _ 0y
vn—1o vn—1o

2 _ 1 n 2
9 0" = n—1 Zi:l Sp:i

o L,(t) : re-scaled Gray statistic

Ly(t) =

, t=0,1/n,2/n,...,1

@ Estimated cutpoint value, [i : value of i which yields the maximum of
|La(2)]
@ Significance test
o Under Hy, L,(t) converges in distribution to the Brownian bridge
(Billingsley, 1999)
o For @ = sup.cp qy [Ln(1)],

oo

p-value = Pr(Q > q) = 22(—1)J‘+1 exp(—2j2¢"?)
j=1
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Numerical studies Simulations

Simulations: setup

@ Prognostic factor: Z ~ U(0,1)

@ True cutpoint: = 0.2,0.4,0.5

o Effect size: § = 0(null); 1, 2, 5(alternative)

@ Assumed PH model: A(t|Z > p) = exp(B)A(t|Z < )

@ Time to event of interest(X) and time to a competing risk(Y’) were
generated from the Gumble's bivariate exponential distribution with a
degree of dependency, . Set o« = 0,0.3

Censoring times(C) were independently generated with time to event
of interest or time to a competing risk from an exponential
distribution with hazard rate of k

@ Censoring fraction: p=0,0.3

o k:P(C<XAY)=p,ie,
. 1+a [ @ @
ko pk{5H = 2+ e T -k gt — e — e T i)

(]

=p
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Numerical studies Simulations

Data generation procedure

o Step 0: Fix p,0(= €%), a, and p
@ Step 1: generate a random variate z from U(0, 1)
@ Step 2: generate a random variate u; from U(0, 1)
o lfz>pu, x==In(l—uw)/0
o lfz<p,x=—=In(l-uw)
@ Step 3: generate a random variate up from U(0, 1)
“n [W(x 1+\/ (w(x)—1)2+4w(x)(1— u2)]

2w(x)
w(x) = di(x)c1(x) + da(x)c2(x) with ¢c1(x) = a(2e™ — 1),
&a(x) = a(2e7 = 1), di(x) = e rEy and
do(x) = ——1=10A(0x)

~ ph X)+(1 14)0A(0x)
e f : pdf of exp(1)

J. Kim (Univ Suwon) 2012 IBC Aug-30-2012 15/ 26



Numerical studies Simulations

Data generation procedure

@ Step 4: generate a random variate ¢ from exp(k)

@ Step 5: define
t=(xAy)Ac

and
d=1xIl(x<yAc)+2xI(y <xAc),

i.e., event occurred(d = 1), competing risk(s) occurred(d = 2),
censored(d = 0)
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Numerical studies Simulations

Upper part of the distribution of the extreme value of the
standardized process when = 0.5
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Numerical studies Simulations

Distribution of the cutpoint estimator with n = 100 and
uw=0.5
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Numerical studies Simulations

Average bias(=true-estimated) with 1 = 0.5

Alpha=0 & n=50 Alpha=0 & n=100 Alpha=0 & n=200
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Numerical studies

Simulation results: when o = 0

Simulations

Table : Empirical bias(bias) and standard deviation(SD) of the estimated
cutpoint and power(power) of the proposed test under no censoring

n =50 n =100 n =200
uw B CR bias SD power bias SD power bias SD power
0.2 0 50 -0.292 0.209 0.040 -0.297 0.218 0.038 -0.296 0.218 0.044
1 31 -0.189 0.206 0.229 -0.139 0.176 0.484 -0.091 0.136 0.817
2 20 -0.057 0.118 0.754 -0.036 0.074 0.984 -0.022 0.046 1.000
5 10 -0.001 0.043 0.989 0.001 0.020 1.000 0.000 0.012 1.000
0.4 0 50 -0.096 0.213 0.047 -0.103 0.211 0.045 -0.091 0.221 0.037
1 36 -0.045 0.137 0.538 -0.034 0.108 0.816 -0.023 0.073 0.979
2 27 -0.001 0.064 0.992 -0.001 0.044 1.000 -0.001 0.028 1.000
5 20 0.023 0.026 1.000 0.012 0.016 1.000 0.006 0.007 1.000
05 0 50 0.019 0.212 0.040 0.011 0.225 0.046 0.007 0.213 0.042
1 38 0.011 0.123 0.491 0.000 0.090 0.814 0.000 0.053 0.989
2 31 0.022 0.054 0.986 0.010 0.030 1.000 0.004 0.016 1.000
5 25 0.029 0.030 1.000 0.014 0.016 1.000 0.007 0.007 1.000
J. Kim (Univ Suwon) 2012 IBC Aug-30-2012

20 / 26



Numerical studies

Simulations

Simulation results: when oo = 0.3

Table : Empirical bias and standard deviation of the estimated cut-off value and
power of the proposed test under no censoring

n =50 n =100 n =200
uw B CR bias SD power bias SD power bias SD power
0.2 0 50 -0.287 0.219 0.031 -0.292 0.217 0.040 -0.297 0.216 0.032
1 31 -0.191 0.197 0.319 -0.151 0.175 0.530 -0.094 0.134 0.796
2 19 -0.076 0.138 0.798 -0.059 0.098 0.981 -0.040 0.072 1.000
5 11 -0.001 0.041 0.998 -0.002 0.029 1.000 -0.001 0.014 1.000
0.4 0 50 -0.087 0.219 0.036 -0.090 0.215 0.033 -0.102 0.211 0.041
1 35 -0.048 0.143 0.523 -0.031 0.104 0.802 -0.020 0.071 0.972
2 27 -0.005 0.070 0.984 -0.001 0.046 1.000 -0.002 0.032 1.000
5 20 0.023 0.026 1.000 0.013 0.014 1.000 0.006 0.008 1.000
05 0 50 0.002 0.217 0.036 0.016 0.217 0.055 0.004 0.216 0.040
1 38 -0.005 0.130 0.552 -0.003 0.091 0.810 -0.001 0.063 0.985
2 30 0.018 0.061 0.985 0.009 0.038 1.000 0.006 0.025 1.000
5 25 0.032 0.032 1.000 0.018 0.020 1.000 0.008 0.009 1.000
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Lung cancer data(Revisited)

@ The 1965 lung cancer patients received a tumor removal surgery at
Seoul Samsung Hospital in Korea from September 1994 to December
2005

@ Event of interest: relapse, competing risk(s): death, prognostic factor:
tumor size at surgery

@ Relapsed(43%), death(18%), censored(39%)

@ Tumor size: ranged over (0,19)
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Determining the optimal cutpoint
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Numerical studies Real example

Cumulative incidence functions by tumor size

Cumylative incicence function
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- tumor size<3.5

Gray’s test: p—value <0.0001
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Concluding remarks

Discussion

(]

Represent the Gray's statistic as a linear rank statistic in competing
risks model

Propose a procedure for identifying the cutpoint and significance test

Simulations showed that the null distribution of our test statistic is
getting close to the theoretical distribution as the sample size
increases, and the proposed test satisfied the nominal level and the
power of our proposed test increases as the effect size increases.

(]

@ We found that the optimal cutpoint of tumor size is 3.5mm, which is
in accordance with physicians’ experience

@ Limitations: extensive simulations are required under the moderate to
heavy censoring to investigate the small-sample properties of our test
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