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Introduction Interval censoring

What is interval-censored survival data?

In clinical trials with periodic follow-up, each subject is observed
through several examinations. However, a subject may skip one or
more pre-appointed visits and then return with the failure already
occurred. In these situations, the true event time of interest lies in an
interval of the form

(L,R],

where L is the last time seen without disease, and R is the first time
the subject appeared with disease

So, a subject with R =∞ is right-censored at L. On the contrary, a
subject with L = 0 is left-censored at R
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Introduction Informative censoring

In what situations may informative censorung occur?

Most existing methodologies with regression analysis were developed
under the assumption of ‘non-informative censoring’ mechanism
(Zhang et al., 2005). The failure time and visiting times of subjects
are frequently assumed to be independent

However, in some situations, this assumption does not hold. For
instance, when failure occurs, a patient could experience some
symptoms prior to or together with failure. This makes the patient
tend to visit the doctor earlier than scheduled (Zhang et al., 2007;
Wang et al., 2010)
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Introduction Informative censoring

How do we deal with informative censorung?

However, it is virtually impossible to observe both the failure time and
the censoring times simultaneously. Subsequently, it is not possible to
test the dependence or independence assumption of the censoring
mechanism

One remedy to circumvent these difficulties is to impose extra
assumptions or modelling
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Introduction Literature review

Review on related works

Huang & Wolfe (2002) have dealt with the clustered right-censored
data assuming the dependence between the failure time and the
censoring time

Zhang et al. (2005, 2007) and Wang et al. (2010) have utilized
frailty models to explain a dependence structure between the failure
time and the censoring times for the interval-censored data with
informative censoring

Kim & Kim (2012) proposed an estimating procedure using the Cox
PH model with a shared frailty for the clustered interval-censored
data under the non-informative censoring assumption

In this talk, we extend the arguments of Huang & Wolfe (2002) and
Kim & KIm (2014) to the clustered interval-censored data in the
presence of informative censoring

J. Kim (Univ. Suwon) Talk at 2015 JSM August-9-2015 6 / 28



Models and parameter estimation Notation

Notation

Tij : the failure time for the j th subject within the i th cluster
(i = 1, . . . , n; j = 1, . . . , ni )

Uij , Vij : two observation times with Uij ≤ Vij

Although we cannot observe the exact failure time Tij , it is only less
than or equal to Uij , between Uij and Vij , or greater than Vij

Wij : the gap time defined as Wij = Vij − Uij if Vij is available;
otherwise Wij =∞

δ1ij = I (Tij ≤ Uij) and δ2ij = I (Uij < Tij ≤ Vij)

xij : a p × 1 vector of covariates

So, the observed data for the j th subject within the i th cluster have
the form of

oij = (Uij ,Vij , δ1ij , δ2ij , x
′
ij)
′.

Subsequently, o = (o′1, . . . , o
′
n)′, where oi = (o′i1, . . . , o

′
ini

)′

J. Kim (Univ. Suwon) Talk at 2015 JSM August-9-2015 7 / 28



Models and parameter estimation Model specification

Proposed models

Assume that T ′ijs within the ith cluster share an unobservable frailty
ri and conditional on xij and ri , they are independent

ri : a normal frailty with a mean of 0 and variance θ

To incorporate the informative censoring, consider Cox PH models
with a shared frailty for Tij , Uij , and Wij , respectively:

λt(t|xij , ri ) = λ0t(t)exp{β′txij + ri}, (1)

λu(t|xij , ri ) = λ0u(t)exp{β′uxij + αuri}, (2)

λw (t|xij , ri ) = λ0w (t)exp{β′wxij + αw ri}, (3)

where βt , βu, and βw are the regression coefficients, λ0t(·), λ0u(·),
and λ0w (·) are the baseline hazard functions for Tij , Uij , and Wij ,
respectively, and αu and αw are unknown parameters representing the
degree of dependency between Tij and Uij and between Tij and Wij ,
respectively
Assume that Tij , Uij , and Wij are conditionally independent given xij
and ri
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Models and parameter estimation Hypothetical data structure

Schematic diagram

starting time=0 end of study U V=U+W 
T 

U= 

W= 

T=no information 

 1 

U=u 

W= 

T<u 
left-censored 

 4 

U=u 

T<u 
left-censored 

 7 

U= 

W= 

T=no information 

 2 

U=u 

W= 

T>u 
right-censored 

 5 

U=u 

W=v-u 

u<T<v 
interval-censored 

 8 

U= 

W= 
T=no information 

 3 

U=u 

W= 

T>u 

right-censored 

 6 

U=u 

W=v-u 

T>v 
right-censored 

 9 

W=(ignored) 
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Models and parameter estimation Conditional likelihood

Likelihood construction

Given xij and ri , the likelihood function Lij for the j th subject within
the i th cluster can be expressed as follows:

when Tij is left-censored at uij and Wij is right-censored at 0,

Lij = P(Uij = uij |xij , ri )P(Tij ∈ (0, uij ]|xij , ri );

when Tij is interval-censored in (uij , vij ] but Wij is exactly observed as
(vij − uij),

Lij = P(Uij = uij |xij , ri )P(Tij ∈ (uij , vij ]|xij , ri )P(Wij = vij − uij |xij , ri );

when both Tij and Wij are right-censored at uij and 0, respectively,

Lij = P(Uij = uij |xij , ri )P(Tij ∈ (uij ,∞)|xij , ri ),

when Tij is right-censored at vij but Wij is exactly observed as
(vij − uij),

Lij = P(Uij = uij |xij , ri )P(Tij ∈ (vij ,∞)|xij , ri )P(Wij = vij − uij |xij , ri )
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Models and parameter estimation Conditional likelihood

Likelihood construction

Thus, given xij and ri , the conditional likelihood for the j th subject
within the i th cluster can be written as

Lij = P(Tij ∈ (0, uij ]|xij , ri )δ1ijP(Tij ∈ (uij , vij ]|xij , ri )δ2ij

× P(Tij ∈ (uij ,∞)|xij , ri )δ3ij (1−ψij )P(Tij ∈ (vij ,∞)|xij , ri )δ3ijψij

× P(Uij = uij |xij , ri )P(Wij = vij − uij |xij , ri )ψij , (4)

where δ1i = 1− δ1i − δ2i and ψij = I (Wij <∞);
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Models and parameter estimation Equivalence class

Equivalence class

Define (lij , rij ] as

(lij , rij ] =


(0, uij ], δ1ij = 1,
(uij , vij ], δ2ij = 1,
(uij ,∞), δ3ij = 1 and ψij = 0,
(vij ,∞), δ3ij = 1 and ψij = 1

Consider an equivalence class of points,

0 = s0 < s1 < · · · < sm < sm+1 =∞,

of the set S = {(lij , rij ]; i = 1, . . . , n; j = 1, . . . , ni}
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Models and parameter estimation Full likelihood

Parameterization

Define

Λ0t(sk) =
k∑

q=0

exp{γq} for k = 0, . . . ,m + 1,

where γ0 = −∞ and γm+1 =∞, and also for k = 1, . . . ,m + 1,

φijk = I ((sk−1, sk ] ∈ (lij , rij ]),

St(sk |xij , ri ) = exp{−Λ0t(sk)exp(β′txij + ri )},

and
gijk = St(sk−1|xij , ri )− St(sk |xij , ri )

So,

P(Tij ∈ (lij , rij ]|xij , ri ) =
m+1∑
k=1

φijkgijk
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Models and parameter estimation Full likelihood

Parameterization

Let 0 < ξ1 < · · · < ξa <∞ and 0 < ζ1 < · · · < ζb <∞ be distinct
realizations of uij and wij , respectively

Let λ0u = (λ0u(ξ1), . . . , λ0u(ξa))′ and λ0w = (λ0w (ζ1), . . . , λ0w (ζb))′

be the vectors of discrete baseline hazard functions of Uij ’s and Wij ’s,
respectively.

Let η = (β′t ,β
′
u,β

′
w , αu, αw ,γ

′,λ′0u,λ
′
0w )′ denote the vector of the

parameters, where γ = (γ1, . . . , γm)′
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Models and parameter estimation Full likelihood

Full likelihood

Then the conditional likelihood in (4) can be expressed as

Lij(η) =

{
m+1∑
k=1

φijkgijk

}
×λ0u(uij)exp{β′

uxij + αuri}exp{−Λ0u(uij)exp(β′
uxij + αuri )}

×[λ0w (wij)exp{β′
wxij + αw ri}exp{−Λ0w (wij)exp(β′

wxij + αw ri )}]ψij

The full likelihood of the i th cluster based on complete data is defined
by

Lci (η, θ) =


ni∏
j=1

Lij(η)

 f (ri ; θ),

where f (ri ; θ) is pdf of the normal frailty with mean 0 and variance θ
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Models and parameter estimation Full likelihood

Complete-data-based likelihood

Therefore, the log-likelihood based on complete data can be written as

lc(η, θ) =
n∑

i=1

ni∑
j=1

log

{
m+1∑
k=1

φijkgijk

}

+
n∑

i=1

ni∑
j=1

a∑
p=1

I (Uij = ξp){logλ0u(ξp) + β′uxij + αuri

−Λ0u(ξp)exp(β′uxij + αuri )}

+
n∑

i=1

ni∑
j=1

b∑
q=1

I (Wij = ζq)ψij{logλ0w (ζq) + β′wxij + αw ri

−Λ0w (ζq)exp(β′wxij + αw ri )}

− 1

2

n∑
i=1

{
log(2πθ) +

r2
i

θ

}
(5)
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Models and parameter estimation EM algorithm

Parameter estimation

Since ri is not observable, we employ the EM algorithm for parameter
estimation
We need to replace the terms involving ri by the conditional
expectations

For any frailty function g(ri ), the conditional expectation can be
written as

E [g(ri )|oi ,η, θ] =

∫∞
−∞ g(ri )L

c
i (η, θ)dri∫∞

−∞ Lci (η, θ)dri

Using Gauss-Hermite method (Abramowitz and Stegun, 1970), the
conditional expectation can be approximated as

Ê [g(ri )|oi ,η, θ] =

∑M
s=1 g(ri (xs))Lci (η, θ; oi , ri (xs))ws∑M

s=1 L
c
i (η, θ; oi , ri (xs))ws

xs : a horizontal abscissa with weight ws for s = 1, . . . ,M, where M is
a pre-specified value
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Models and parameter estimation EM algorithm

Parameter estimation

Since the expectation of (5) is decomposed into four terms, the
M-step is proceeded by estimating term by term

For estimating (β′t ,γ
′)′, we employed one-step Newton-Raphson

algorithm

(β
(l)
t

′
,γ(l)′)′ : the l th(l = 0, . . . ) iterative solution of (β′t ,γ

′)′

The (l + 1)th solution can be derived from the following equation:(
β

(l+1)
t

γ(l+1)

)
=

(
β

(l)
t

γ(l)

)
− Ê [Ht |o,β(l)

t ,γ
(l)]−1Ê [Ut |o,β(l)

t ,γ
(l)],

where

Ut(βt ,γ) =

 ∂lc (η,θ)
∂γ′

∂lc (η,θ)

∂β′
t

 and Ht(βt ,γ) =

 ∂2lc (η,θ)
∂γ∂γ′

∂2lc (η,θ)

∂γ∂β′
t

∂2lc (η,θ)

∂βt∂γ′
∂2lc (η,θ)

∂βt∂β
′
t
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Models and parameter estimation EM algorithm

Parameter estimation

For estimating (β′u, αu)′, we first determine the Breslow-type estimate
for λ0u (Klein & Moeschberger, 2003). Then we use this estimate to
derive one-step estimate of (β′u, αu)′

Similarly, we obtain one-step estimates of (β′w , αw )′ after obtaining
the Breslow-type estimate for λ0w

Now let η̂ denote the maximum likelihood estimate of η
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Models and parameter estimation EM algorithm

Variance estimation

By the method of Louis (1982) the estimated variance-covariance
matrix of η̂ can be defined as the inverse of the observed matrix I (η̂),
where

I (η̂) = E

[
−∂

2lc(η, θ)

∂η∂η′

∣∣∣∣o, η̂, θ̂]−E[∂lc(η, θ)

∂η

∂lc(η, θ)

∂η′

∣∣∣∣o, η̂, θ̂]
Thus, the inference regarding βt , βu, and βw can be done using the
sub-matrix of I (η̂)−1 in conjunction with these parameters. Similarly,
we use the elements of I (η̂)−1 for the inference of αu and αw
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Numerical studies Simulations

Setup

The frailty ri is generated from a normal distribution with a mean of
zero and variance θ

θ = 1 and 2

The values of tij , uij , and wij are generated from the models (1)-(3)
accordingly

A binary covariate zij is generated from a Bernoulli trial with a success
probability of 0.5
Set βu = βw = βt = αu = αw = 0.5, and λu(t) = 4, λw (t) = 8, and
λt(t) = 16 f t > 0
We control the last observation to be 10 so that the values of tij , uij ,
and vij cannot be observed

We use different number of clusters (n = 25, 100, and 200) with the
same ni being 2, 3, or 5 for each cluster and ni being generated from
the discrete uniform distribution {1, . . . , 5}
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Numerical studies Simulations

Simulation results: when ni ’s are equal for each cluster

Table 1: Simulation results of the mean of bias (Bias), the standard deviation (SE), the mean of standard error (SEM) of parameter estimates, and
the coverage probability (CP) based on 1,000 replications when ni’s are equal for each cluster

ni

2 3 5
n Parameter Bias SE SEM CP Bias SE SEM CP Bias SE SEM CP

θ = 1
25 βu 0.017 0.326 0.310 94.7 0.026 0.267 0.248 92.8 0.014 0.196 0.189 94.1

αu 0.014 0.185 0.174 93.3 0.016 0.142 0.139 94.9 0.011 0.111 0.106 94.7
βw 0.037 0.383 0.357 94.2 0.020 0.291 0.283 94.6 0.017 0.224 0.215 94.6
αw 0.032 0.221 0.205 94.4 0.014 0.169 0.162 93.8 0.015 0.129 0.123 93.4
βt 0.076 0.537 0.527 95.2 0.052 0.437 0.415 94.6 0.076 0.314 0.306 94.2
θ 0.070 0.829 0.643 87.2 0.096 0.696 0.551 88.8 0.087 0.510 0.453 91.2

100 βu 0.004 0.148 0.148 94.6 0.005 0.117 0.120 95.7 0.002 0.093 0.092 94.6
αu 0.008 0.080 0.080 95.7 0.003 0.067 0.065 95.1 0.003 0.052 0.050 94.3
βw 0.016 0.169 0.167 94.7 -0.006 0.141 0.135 94.1 0.012 0.101 0.104 96.0
αw 0.004 0.095 0.092 95.2 0.006 0.074 0.075 95.3 0.003 0.057 0.058 95.5
βt 0.021 0.254 0.253 95.1 0.046 0.199 0.202 94.0 0.055 0.152 0.151 94.0
θ -0.077 0.388 0.291 81.9 -0.005 0.313 0.250 87.7 0.041 0.241 0.213 92.1

200 βu 0.004 0.105 0.104 95.7 0.001 0.084 0.084 96.0 -0.002 0.066 0.065 95.1
αu 0.003 0.057 0.056 94.0 0.003 0.045 0.046 95.1 0.000 0.035 0.035 95.6
βw -0.001 0.119 0.117 94.7 -0.007 0.096 0.095 94.8 0.004 0.076 0.073 93.2
αw 0.004 0.066 0.064 95.2 0.001 0.052 0.052 94.5 0.003 0.041 0.040 94.7
βt 0.020 0.179 0.178 95.5 0.033 0.138 0.142 95.0 0.061 0.110 0.107 94.7
θ -0.102 0.263 0.201 80.5 -0.022 0.214 0.174 87.5 0.044 0.174 0.150 91.0

θ = 2
25 βu 0.013 0.327 0.311 94.9 0.026 0.266 0.249 93.3 0.013 0.196 0.189 94.6

αu 0.015 0.141 0.132 93.7 0.016 0.106 0.105 95.6 0.010 0.084 0.081 94.9
βw 0.036 0.385 0.361 94.4 0.014 0.293 0.285 95.0 0.016 0.224 0.216 94.5
αw 0.030 0.166 0.159 95.4 0.014 0.130 0.125 94.8 0.013 0.098 0.095 94.1
βt 0.022 0.541 0.548 95.5 0.041 0.450 0.431 94.2 0.070 0.328 0.312 94.1
θ -0.276 1.070 0.862 80.1 0.000 1.070 0.830 84.4 0.084 0.851 0.752 89.6

100 βu 0.004 0.147 0.148 94.3 0.005 0.117 0.120 95.7 0.003 0.093 0.092 94.4
αu 0.007 0.061 0.061 95.1 0.003 0.050 0.049 94.7 0.003 0.039 0.038 94.8
βw 0.016 0.170 0.169 94.6 -0.007 0.141 0.136 94.2 0.012 0.101 0.105 96.4
αw 0.005 0.072 0.071 95.6 0.006 0.058 0.058 94.8 0.003 0.044 0.044 94.6
βt -0.010 0.263 0.268 95.5 0.032 0.209 0.210 95.9 0.052 0.151 0.154 94.1
θ -0.347 0.527 0.402 72.0 -0.134 0.468 0.379 82.9 0.023 0.399 0.356 91.7

200 βu 0.004 0.105 0.104 95.5 0.001 0.084 0.084 95.9 -0.002 0.066 0.065 95.1
αu 0.003 0.043 0.043 94.4 0.003 0.034 0.035 95.4 0.000 0.026 0.027 95.5
βw -0.002 0.119 0.118 94.4 -0.007 0.097 0.096 94.7 0.004 0.076 0.074 93.6
αw 0.003 0.051 0.050 94.9 0.002 0.040 0.040 94.6 0.002 0.032 0.031 94.5
βt -0.009 0.189 0.188 95.9 0.024 0.146 0.148 95.2 0.060 0.111 0.108 94.6
θ -0.381 0.364 0.278 61.4 -0.150 0.330 0.264 81.4 0.015 0.290 0.250 91.3

4.2. Lymphatic filariasis data

We analyze data related to lymphatic filariasis (LF) disease which is a parasite helminthiasis often infected by
mosquitoes. This dataset was analyzed earlier by several authors including Williamson et al. (2008), Zhang & Sun
(2010), and Kim & Kim (2014). Note that this dataset is composed of unequal cluster sizes. In this analysis we inves-
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Numerical studies Simulations

Simulation results: when ni ’s are unequal

Table 2: Simulation results of the mean of bias (Bias), the standard deviation (SE), the mean of standard error (SEM) of parameter estimates, and
the coverage probability (CP) based on 1,000 replications when ni’s are unequal

θ
1 2

n Parameter Bias SE SEM CP Bias SE SEM CP
25 βu 0.023 0.267 0.254 94.2 0.023 0.267 0.254 94.2

αu 0.020 0.149 0.146 94.5 0.018 0.113 0.110 94.3
βw 0.003 0.296 0.289 94.1 0.000 0.300 0.291 94.5
αw 0.018 0.181 0.170 95.1 0.019 0.139 0.131 95.2
βt 0.051 0.429 0.420 94.8 0.043 0.439 0.436 95.9
θ 0.078 0.711 0.565 85.7 -0.020 1.079 0.856 84.5

100 βu 0.007 0.123 0.122 95.6 0.007 0.123 0.122 95.2
αu 0.000 0.069 0.066 94.5 0.000 0.053 0.050 93.7
βw 0.010 0.141 0.138 94.5 0.009 0.142 0.139 94.3
αw 0.009 0.078 0.077 95.1 0.008 0.061 0.059 94.8
βt 0.039 0.210 0.205 94.9 0.024 0.214 0.212 95.8
θ -0.013 0.331 0.258 85.6 -0.137 0.507 0.393 82.5

200 βu 0.002 0.087 0.086 94.9 0.002 0.087 0.086 94.5
αu 0.004 0.043 0.046 97.2 0.003 0.033 0.035 97.2
βw 0.005 0.097 0.097 94.4 0.004 0.099 0.097 94.0
αw 0.001 0.054 0.053 94.6 0.001 0.041 0.041 95.0
βt 0.036 0.146 0.144 93.2 0.023 0.149 0.150 95.4
θ -0.014 0.221 0.181 87.2 -0.123 0.339 0.277 84.5

tigate the effect of extermination on adult worm nests by suppressing parasite infection. DEC/ALB is administered for
the control group whereas only DEC is applied to the treatment group. It has been known that a male with LF disease
has at least one adult worm nest. Moreover, an ultrasonic inspection on hydrocele of male often reveals whether this
disease has been cured by periodic checkup. Due to these types of characteristics LF data have been regarded as
clustered interval-censored data and thus has been analyzed with some regression models in the literature.

The numerical results for LF data analysis are provided in Table 4. In perspective of the treatment effect the p-
value shows that it is not significant for T , but for both U and W. Further, the signs of the estimates are all negative for
the treatment group. This implies that only DEC treatment makes the times of U and W shorter than when DEC/ALB
is applied. The age effect turned out to be not significant for all T , U, and W. We notice from Table 4 that the estimate
for θ is with a value of 1.513 indicating a strong significance, which reveals that the times of U and W are getting
shorter as the frailty of T gets larger.

5. Concluding Remarks

In this article, we proposed the Cox proportional hazards models with a frailty effect being incorporated with clus-
tered interval-censored data for which there is a dependence between the failure time and the censoring times. After
constructing the likelihood function based on complete data, we employed the EM algorithm for parameter estimation
procedures. In this process the terms involving the frailty were replaced by their conditional expectations because they
are not observable. We also investigated the finite-sample properties of the proposed estimation procedure through
simulations when the number of observations within each cluster is equal or unequal. It turned out that when a cluster
size is fixed, both the mean of bias and the mean of standard error of parameter estimates except for θ decrease as the
number of the clusters increases, and the coverage probabilities are close to the nominal level of 0.95. The coverage
probability for θ was increased and became closer to the nominal level as the value of θ gets smaller when the number
of clusters is fixed, or as the cluster size increases when the number of clusters is fixed. Further, the overall trends
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Numerical studies Simulations

Simulation results: four different frailty distributions when
n is equal to 100 and ni ’s are unequal

Table 2: Simulation results of the mean of bias (Bias), the standard deviation (SD), the mean of standard error (SEM) of parameter estimates, and
the coverage probability (CP) based on 1,000 replications when ni’s are unequal

θ
1 2

n Parameter Bias SD SEM CP Bias SD SEM CP
25 βu 0.023 0.267 0.254 94.2 0.023 0.267 0.254 94.2

αu 0.020 0.149 0.146 94.5 0.018 0.113 0.110 94.3
βw 0.003 0.296 0.289 94.1 0.000 0.300 0.291 94.5
αw 0.018 0.181 0.170 95.1 0.019 0.139 0.131 95.2
βt 0.051 0.429 0.420 94.8 0.043 0.439 0.436 95.9
θ 0.078 0.711 0.565 85.7 -0.020 1.079 0.856 84.5

100 βu 0.007 0.123 0.122 95.6 0.007 0.123 0.122 95.2
αu 0.000 0.069 0.066 94.5 0.000 0.053 0.050 93.7
βw 0.010 0.141 0.138 94.5 0.009 0.142 0.139 94.3
αw 0.009 0.078 0.077 95.1 0.008 0.061 0.059 94.8
βt 0.039 0.210 0.205 94.9 0.024 0.214 0.212 95.8
θ -0.013 0.331 0.258 85.6 -0.137 0.507 0.393 82.5

200 βu 0.002 0.087 0.086 94.9 0.002 0.087 0.086 94.5
αu 0.004 0.043 0.046 97.2 0.003 0.033 0.035 97.2
βw 0.005 0.097 0.097 94.4 0.004 0.099 0.097 94.0
αw 0.001 0.054 0.053 94.6 0.001 0.041 0.041 95.0
βt 0.036 0.146 0.144 93.2 0.023 0.149 0.150 95.4
θ -0.014 0.221 0.181 87.2 -0.123 0.339 0.277 84.5

Table 3: Simulation results of the mean of bias (Bias), the standard deviation (SD), the mean of standard error (SEM) of parameter estimates, and
the coverage probability (CP) based on 1,000 replications under four different frailty distributions when n is equal to 100 and ni’s are unequal

Frailty distribution
N(0, 2.43) U(−2.70, 2.70) t(3.40) G(1.46, 0.68)

Parameter Bias SD SEM CP Bias SD SEM CP Bias SD SEM CP Bias SD SEM CP
βu 0.006 0.123 0.122 95.4 0.005 0.124 0.122 95.0 0.001 0.118 0.122 95.9 -0.005 0.123 0.122 95.1
αu 0.000 0.049 0.047 93.6 0.002 0.045 0.047 95.4 0.005 0.053 0.051 94.2 0.002 0.049 0.048 94.1
βw 0.010 0.142 0.139 94.7 -0.003 0.144 0.139 94.4 -0.001 0.142 0.139 95.1 0.008 0.137 0.134 94.1
αw 0.008 0.057 0.056 94.9 0.004 0.057 0.054 94.2 0.004 0.062 0.062 95.4 0.001 0.050 0.052 96.9
βt 0.025 0.216 0.215 95.1 0.009 0.221 0.215 95.0 0.027 0.215 0.213 94.2 -0.055 0.226 0.230 94.5
θ -0.184 0.548 0.451 84.1 -0.181 0.506 0.451 87.0 -0.611 0.576 0.386 54.2 -0.836 0.418 0.380 39.7

udder quarters are obviously clustered within a cow and udder quarters that experience an event are interval-censored
because of periodic follow-up. We intend to investigate the effect of the covariates that change within cow (e.g., front
and rear udder quarters) and covariates that change between cows (e.g., number of calving).

Table 4 shows the results of the analysis of mastitis data. The significance of θ implies that the magnitude of
frailty among cows varies (p-value<0.001). The parameters, αu and αw, are highly significant (p-value<0.001) and
their estimates have positive signs, which implies that the times of U and W decrease as the frailty on T increases. The
udder quarters located in the rear are exposed to bacterial infection much earlier than those in the front (e0.162=1.18) but
the effect size is insignificant (p-value=0.172). Cows with the number of calving once, or 2 to 4 times are similarly
exposed to infection (e−0.011=0.9891). However, cows with the number of calving over 4 are more suceptable to
bacterial infection than those whose calving is less than or equal to 4 (e1.618=5.04), which indicates strong significance

7

J. Kim (Univ. Suwon) Talk at 2015 JSM August-9-2015 24 / 28



Numerical studies Real example

Mastitis data

A observation study was conducted to estimate the incidence of
different organisms causing mastitis in the dairy cattle population in
Flanders

A total of 100 cows was monitored at the udder-quarter level for
bacterial infections from the time of parturition, at which the cow was
included in the cohort and observed infection-free, until the end of the
lactation period

The four udder quarters are obviously clustered within a cow and
udder quarters that experience an event are interval-censored because
of periodic follow-up

We want to investigate the effect of the covariates that change within
cow (e.g. front and rear udder quarters) and covariates that change
between cows (e.g. number of calving).
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Numerical studies Real example

Results

Table 3: Parameter estimates, their standard errors, and p-values of mastitis data

Parameter Estimate SE p-value
βu

location: rear 0.175 0.101 0.082
calving: 2-4 -0.110 0.109 0.317
calving: >4 0.640 0.168 <0.001

αu 0.819 0.053 <0.001
βw

location: rear 0.086 0.104 0.405
calving: 2-4 -0.154 0.112 0.170
calving: >4 0.122 0.169 0.469

αw 0.200 0.047 <0.001
βt

location: rear 0.162 0.119 0.172
calving: 2-4 -0.011 0.334 0.975
calving: >4 1.618 0.473 0.001

θ 2.001 0.341 <0.001

Table 4: Parameter estimates, their standard errors, and p-values of lymphatic filariasis data

Parameter Estimate SE p-value
βu

group: DEC/ALB -0.543 0.261 0.038
age 0.013 0.013 0.312

αu 2.386 0.270 <0.001
βw

group: DEC/ALB -1.613 0.497 0.001
age 0.008 0.022 0.721

αw 2.474 0.481 <0.001
βt

group: DEC/ALB -0.797 0.544 0.143
age 0.009 0.028 0.737

θ 1.513 0.558 0.007

were similar regardless of whether the number of observations with the same cluster is equal or unequal.
We have proposed the model assuming that a common frailty is shared through the failure time, the first ob-

servation time, and the waiting time. However, one can use some general models including a multivariate normal
distribution to assess more flexibility in frailty structure. Moreover, it could be a future research topic to deal with
asymptotic properties under these models.

Appendix

For the notational simplicity, for k = 1, . . . ,m, let

bi jk = exp{γk + β′t xi j + ri},

ci jk =

m+1∑

q=k

(φi jq − φi j,q+1)S t(sq|xi j, ri),

8
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Concluding remarks

Summary

We proposed the Cox PH models with a shared frailty effect
incorporated with clustered interval-censored data for which there
exits a dependence between the failure time and the censoring times

After constructing the likelihood function based on complete data, we
employed the EM algorithm for parameter estimation

Simulation results showed that when a cluster size is fixed, both Bias
and SEM of parameter estimates except for θ decrease as the number
of the clusters increases, and the CPs are close to the nominal level of
0.95.

The overall trends were similar regardless of whether the number of
observations within the same cluster is equal or unequal

Moreover, our proposed method was robust to misspecified frailty
distribution such as the uniform, t, and gamma distributions
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Thank you!
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