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Background & Review

Longitudinal data

In longitudinal studies, subjects are measured repeatedly over time

For subject i = 1, . . . , n, observed data are

(Tij ,Zij , xij), j = 1, . . . , ki ,

where Tij is a measurement time (observation time), and Zij and xij

are response and a vector of covariates measured at Tij , respectively

In ordinary longitudinal data,

measurement times are fixed
ki are same for all subjects, i.e., ki = k , ∀i

However, longitudinal studies related with human being are not easy
to keep this scheme
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Background & Review

Statistical modeling of longitudinal data

Two objectives for statistical models of longitudinal data

To adopt the conventional regression tools, which relate the response
variables to the explanatory variables
To account for the within-subject correlation

In most longitudinal studies,

the regression objective is of primary interest
the within-subject correlation is essential, but is often of secondary
interest

Three modeling approaches with longitudinal data (Diggle, Heagerty,
Liang & Zegger, 2002)
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Background & Review

Three approaches

Marginal model approach

E(Zij) = µij is related to xij by

g(µij) = x
′

ijβ,

where g is a known link function
Var(Zij) = ν(µij)φ, where ν is a known function and φ is the
over-dispersion parameter
Cov(Zij ,Zik) = c(µij , µik ;α), where c is a known function and α is the
additional parameter.

Random effects model approach

g(E(Zij |bi)) = x′ijβ
∗ + w′

ijbi , where wij is a vector of covariates whose
coefficients vary across subjects; bi ∼ F (Θ) with mean zero and
covariance matrix Θ, where F is a known distribution function
Assume the conditional independence of Zi1, . . . ,Ziki

given bi
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Background & Review

Three approaches

Transition model approach

E(Zij |Zi ,j−1, . . . ,Zi1) = µc
ij depends on xij and past responses,

g(µc
ij) = x

′

ijβ
∗∗ +

∑

k

α∗∗

k fk(Zi ,j−1, . . . ,Zi1),

where fk , k = 1, . . . are known functions
Var(Zij |Zi ,j−1, . . . ,Zi1) = ν(µc

ij)φ, where ν is a known function and φ
is the over-dispersion parameter
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Background & Review

Goal

Dynamic model approach proposed by Scheike & Zhang (1998),
Martinussen & Scheike (1999, 2000) among others

Describe longitudinal data consisting of the triplet (responses,
observation times, covariates) using a marked point process
Model the conditional mean of the current response given past
outcomes, which amount to previously obtained measurements and the
times for these measurements (≡ transition model approach)

Propose nonparametric tests whether two groups of longitudinal
response data have identical conditional mean functions in the
presence of group-specific observation and/or termination times
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Background & Review

Marked point process

Denote (E , E) by a measurable mark space

Let (Zk , k ≥ 1) be a sequence of rvs in E and the sequence
(Tk , k ≥ 1) constitutes a counting process N(t) =

∑

k I (Tk ≤ t)

The double sequence (Tk ,Zk) is called a marked point process
(MPP) with an associated counting process

N(A, t) =
∑

k

I (Zk ∈ A)I (Tk ≤ t),A ∈ E

Specially, N(t) = N(E , t)

The MPP can be identified with counting measure p(ds × dz) defined
by p((0, t] × A) = N(A, t),A ∈ E .

Let FTk−
= σ(Tj ,Zj , 1 ≤ j ≤ k − 1;Tk)
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Background & Review

Marked point process

The marked point counting process N(A, t) has the intensity function

λt(dz) = λ(t)Φt(dz),

where λ(t) is a nonnegative Ft−predictable process and Φt is defined
as Φt(A) = Pr(Z (t) ∈ A|Ft−)

For a Ft−predictable process H, the MPP integral
∫ t

0

∫

E
H(s, z)p(ds × dz)

may be decomposed as

∫ t

0
λ(s){

∫

E

H(s, z)Φs(dz)}ds +

∫ t

0

∫

E

H(s, z)q(ds × dz) (1)

where q(dt × dz) = p(dt × dz) − λ(t)Φt(dz)dt is a marked point
martingale.
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Proposed tests

Data structure & notations

Let (R ,B) denote a mark space, where B is the Borel σ-field on
R = (−∞,∞)

Let Dk,i denote the death time and Ck,i the censoring time, where
k = 1, 2; i = 1, . . . , nk

Assume that Ck,i is independent of both Dk,i and Nk,i (·, ·)

Due to censoring, Dk,i and Nk,i (·, ·) may not be fully observed

For A ∈ B, we observe

{(Nk,i (A, · ∧ Ck,i ),Z
k,i (· ∧ Ck,i ),Xk,i , δk,i )|k = 1, 2; i = 1, . . . , nk},

where Xk,i = Dk,i ∧ Ck,i , and δk,i = I (Dk,i ≤ Ck,i ).
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Proposed tests

Data structure & notations

Let Yk,i(t) = I (Xk,i ≥ t) and Yk·(t) =
∑nk

i=1 Yk,i(t)

For the longitudinal responses, i.e. marks, it is modeled as

Z k,i (t) = mk(t) + ǫk,i , (2)

where mk(t) is a smooth mean function and ǫk,i has mean zero and
variance σ2

k

For the observation times, the intensity process λk,i (t) can be written
as

λk,i (t) = αk(t)Yk,i (t), (3)

where αk(t) is a deterministic function given the accrued information
up to time t−
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Proposed tests

Cumulative mean function

Let µk(t) =
∫ t

0 mk(s)ds be the cumulative mean function for group k

Under the assumed models (2) and (3), for any fixed t, using the
decomposition (1), we have the decomposition

∫

R

zpk,i (dt × dz) = αk(t)Yk,i(t)dµk(t) +

∫

R

zqk,i (dt × dz)

Estimate µk(t) by

µ̂k(t) =

nk
∑

i=1

∫ t

0

∫

R

Jk(s)Yk,i (s)
z

α̂k(s)Yk·(s)
pk,i (ds × dz),

where Jk(t) = I{Yk·(t) > 0, α̂k(t) > 0} and α̂k(t) is the
kernel-smoothed estimate of the Nelson-Aalen estimator of
Ak(t) =

∫ t

0 αk(s)ds
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Proposed tests

Weighted cumulative mean function

Define a weighted cumulative mean function as

ψk(t) =

∫ t

0
Sk(s)dµk(s),

where Sk(t) = Pr(Dk,i ≥ t)

Estimate ψk(t) by

ψ̂k(t) =

∫ t

0
Ŝk(s)d µ̂k(s),

where Ŝk(t) is the Kaplan-Meier estimator of Sk(t) based on
{(Xk,i , δk,i )|i = 1, . . . , nk}
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Proposed tests

Asymptotic distribution of ψ̂k(t)

Under the regularity conditions,

n
1/2
k {ψ̂k(t) − ψk(t)}

d
−→ Uk(t), t ∈ [0, τk ],

where Uk(t) is a mean zero Gaussian process whose covariance
function at (s, t) consistently estimated by

ξ̂k(s, t) = n−1
k

∑nk

i=1 Ψ̂k,i (s)Ψ̂k,i (t),

where

Ψ̂k,i (t) =
∫ t

0

∫

R
Jk(s) Ŝk(s)

α̂k (s)Yk·(s)/nk
{Yk,i (s)z − m̂k(s)}pk,i (ds × dz)

−µ̂k(t)
∫ t

0

dM̂D
k,i

(s)

Yk·(s)/nk
+

∫ t

0 µ̂k(s)
dM̂D

k,i
(s)

Yk·(s)/nk
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Proposed tests

Nonparametric two-sample tests

To compare mean functions of two groups when two groups have
both different distributions for the observation times and/or different
intensities for the termination time

Hypothesis of interest: H0 : ψ1(t) = ψ2(t),∀t ∈ (0, τ ], where
τ = τ1 ∧ τ2
Two test statistics

QC = ψ̂1(τ) − ψ̂2(τ)

QLR =
∫

τ

0
K̂LR(s)d{ψ1(s) − ψ2(s)}, where K̂LR(t) = Y1·(t)Y2·(t)

Y1·(t)+Y2·(t)
n

n1n2
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Proposed tests

Asymptotic null distribution

(n1n2/n)1/2QC and (n1n2/n)1/2QLR converge in distribution to mean
zero normal random variables with variances consistently estimated by

Σ̂C = n2
nn1

∑n1
i=1

{

∫ τ
0 dΨ̂1,i(s)

}2
+ n1

nn2

∑n2
i=1

{

∫ τ
0 dΨ̂2,i(s)

}2

and

Σ̂LR =
n2
nn1

∑n1
i=1

{

∫ τ
0 K̂LR(s)dΨ̂1,i(s)

}2
+ n1

nn2

∑n2
i=1

{

∫ τ
0 K̂LR(s)dΨ̂2,i(s)

}2
,

respectively
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Simulations

Design parameters

Gap times(sk,i ,j): Poisson(λs
k = ρλk)

Observation times: tk,i ,j = tk,i ,j−1 + sk,i ,j with tk,i ,0 ≡ 0

Two types of dependency

ρ = 1
ρ ∼ Gamma(0.2, 5)

Two types of mean function

v(t) = 0.1 + 0.8t

w(t) = 0.1 + 0.7t + 0.3t0.5

Error term(ǫk,i ): N(0, 0.72)

Survival times(Dk,i ,j): Exp(λD
k ) on (2,∞), i.e., Generated from a

two-parameter exponential distribution

Censoring times(Ck,i ): Fixed censoring at 6.7
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Simulations

Setup for parameters

For Group 1, λ1 = 1.0 and λD
1 = 0.4

For size, m1(t) = v(t) = m2(t), λ1 = λ2, and λD
1 = λD

2

For power, m1(t) = v(t) and m2(t) = w(t), i.e., m1(t) 6= m2(t),
λ1 6= λ2, or λD

1 6= λD
2

Sample sizes: n1 = n2 = 50 or 100

Based on 1,000 samples
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Simulations

Size and powers when ρ = 1

m1(t) = m2(t) m1(t) 6= m2(t)
λ2 λD

2 n = 50 n = 100 n = 50 n = 100

1.0 0.4 0.050 0.052 0.190 0.278
1.0 0.2 0.080 0.096 0.264 0.386
1.0 0.1 0.114 0.196 0.312 0.438

0.6 0.4 0.992 1.000 1.000 1.000
0.8 0.4 0.510 0.744 0.850 0.982
0.9 0.4 0.144 0.230 0.536 0.750
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Simulations

Size and powers when ρ ∼ Gamma(0, 2, 5)

m1 = m2 m1 6= m2

λ2 λD
2 n = 50 n = 100 n = 50 n = 100

1.0 0.4 0.058 0.052 0.110 0.141
1.0 0.2 0.092 0.168 0.154 0.260
1.0 0.1 0.152 0.264 0.300 0.310

0.6 0.4 0.892 0.982 0.968 0.996
0.8 0.4 0.352 0.486 0.604 0.836
0.9 0.4 0.132 0.133 0.334 0.462
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Real example

CSL 1 data set

Data set from 446 patients with liver cirrhosis conducted by the
Copenhagen Study Group for Liver Diseases (Schlichting et al.,
Hepatology, 1983)

Outcome: Prothrombin index, a measurement based on a blood test
of coagulation factors II, VII, and X produced by the liver

Placebo: 257 (165: died, 92: censored), Prednisone-treated: 189
(105: died, 84: censored)

Scheduled visiting times: At the entry, three, six and twelve months
after treatment and thereafter once a year, BUT the actual visiting
times varied considerably around the scheduled times

# of visits ranged from 1 to 16

Average visit numbers: 5.45 (Placebo) and 5.72 (Prednisone-treated)

Q̃LR =
√

n1n2/nQLR = −2.809 (p−value=0.0005)
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Real example

Plots of survival curves & Nelson-Aalen estimators of

visiting times
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Real example

Plots of cumulative mean functions & weighted cumulative

mean functions
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Concluding remarks

Conclusion & extension

Propose test statistics to compare the mean functions of two groups
for longitudinal data with group-specific observation and termination
times

According to simulations, it controls well a significance level and also
its power seems to be reasonable for several combinations of the
distribution of the observation times and the intensity of termination
time

Extend to the longitudinal regression data with covariate-specific
observation and termination times
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Thank You!
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