Log-rank-type nonparametric test for comparing survival functions with doubly interval-censored data

Jinheum Kim¹ Chung Mo Nam²

¹Department of Applied Statistics University of Suwon

²Department of Preventive Medicine and Public Health Yonsei University College of Medicine

July 15, 2008

Doubly interval-censored data & goal

- Data:
 - X_i, S_i : Times of the occurrences of two related events with $X_i \leq S_i$
 - In case of AIDS cohort study, X_i: HIV infection time & S_i: diagnosis time of AIDS
 - $T_i = S_i X_i$: Survival time of interest
 - In case of AIDS cohort study, T_i : AIDS incubation time
 - But, X_i and S_i are known only to lie in $[L_i, R_i]$ and $[U_i, V_i]$, respectively
- Goal:
 - Let $S_q(t) = Pr(T > t)$, q = 1, ..., p, denote the survival function of T for the qth treatment group
 - To test
 - $H_0: S_1(t) = \cdots = S_p(t), \forall t \in (0, \infty) \text{ vs.}$
 - H_a : Not all survival functions are equal at t

Nonparametric test procedures for comparing survival functions

- Interval-censored data: Rank-based
 - Sun(1996, StatMed)
 - Fay(1996, StatMed)
 - Pan(2000, StatMed)
 - Zhao & Sun(2004, StatMed)
 - Kim, Kang, & Nam(2006, CSDA)
- Doubly interval-censored data
 - Sun(2001, LIDA)
 - Focus on discrete failure time data
 - It has a problem that it does not reduce to the usual log-rank test for the right-censored data
 - Sun(2006 in the textbook "The Statistical Analysis of Interval-censored Failure Time Data")
 - Modify Sun(2001)'s test
 - A generalization of Zhao & Sun(2004)'s test

Notations

- $u_1 < u_2 < \cdots < u_r$: Unique ordered elements of $\{L_i, R_i, i = 1, \dots, n\}$
- $v_1 < v_2 < \cdots < v_s < v_{s+1} = \infty$: Unique ordered elements of $\{U_i R_i, V_i L_i, i = 1, \dots, n\}$
- For i = 1, ..., n; k = 1, ..., s, define

$$\alpha_{ik} = \left\{ \begin{array}{l} \sum_{j=1}^r I(u_j + v_k \in [U_i, V_i], u_j \in [L_i, R_i]), & \text{if } v_k \in [U_i - R_i, V_i - L_i] \\ 0, & \text{o.w} \end{array} \right.$$

- Define δ_i as 1, if T_i is interval-censored or exactly observed; 0, o.w
- \mathcal{R}_k : Pseudo risk set of all subjects who have a nonzero probability of being at risk up to v_k
- $m{\mathcal{D}}_k$: Pseudo death set of all subjects who have a nonzero probability of failing at v_k

Model assumption

• Under H_0 , each admissible value of (X_i, T_i) for subject i is uniformly distributed over a set

$$A_i = \{(u_j, v_k); u_j + v_k \in [U_i, V_i], u_j \in [L_i, R_i], v_k \in [U_i - R_i, V_i - L_i]\}$$

with equal probability of $1/\alpha_{i+}$, where $\alpha_{i+} = \sum_{k=1}^{s} \alpha_{ik}$

• In other words, if $(u_j, v_k) \in A_i$,

$$Pr\{(X_i = u_j, T_i = v_k) | (L_i, R_i, U_i, V_i)\} = 1/\alpha_{i+},$$
 (1)

and 0, o.w

Weights

• Under model (1), conditional probability of subject i being at risk up to v_k is given by

$$w_{ik}^{r} = Pr\{T_{i} \ge v_{k} | (L_{i}, R_{i}, U_{i}, V_{i})\} = \sum_{m=k}^{s} \alpha_{im} / \sum_{n=1}^{s} \alpha_{in}$$
 (2)

• Conditional probability of subject i failing at v_k is given by

$$w_{ik}^d = Pr\{T_i = v_k | (L_i, R_i, U_i, V_i)\} = \delta_i \alpha_{ik} / \sum_{r=1}^s \alpha_{in}$$
 (3)

Pseudo risk set & pseudo death set

- From (2) & (3), $n_k = \sum_{i=1}^n w_{ik}^r$: Pseudo-count of \mathcal{R}_k at v_k
- $d_k = \sum_{i=1}^n w_{ik}^d$: Pseudo-count of \mathcal{D}_k at v_k
- ullet $n_{kq} = \sum_{i}^{q} w_{ik}^{r}$: Pseudo-count of \mathcal{R}_{k} at v_{k} from treatment group q
- $d_{kq} = \sum_{i}^{q} w_{ik}^{d}$: Pseudo-count of \mathcal{D}_{k} at v_{k} from treatment group q, where \sum_{i}^{q} denotes the summation over all subjects from treatment group q
- Remark:
 - For right-censored data, n_k , d_k , n_{kq} , and d_{kq} reduce to corresponding values in the usual log-rank test

Test statistic

- As in Sun (2001, LIDA), plug in n_k , d_k , n_{kq} , and d_{kq} into the usual log-rank test
- Define the log-rank-type statistic

$$\mathbf{U}=(U_1,\ldots,U_{p-1})',$$

where
$$U_q = \sum_{k=1}^{s} (d_{kq} - d_k n_{kq} / n_k), \ q = 1, ..., p-1$$

 \bullet To test H_0 , propose a standardized test statistic based on U, given by

$$P = \mathbf{U}' \hat{\mathbf{\Sigma}}^{-1} \mathbf{U}, \tag{4}$$

where $\hat{\Sigma}$ is the estimated covariance matrix of U

• Use $P \sim \chi^2(p-1)$ approximately under H_0

Covariance matrix estimation: Multiple imputation method

• Step 1: Generate $X_i^{(b)}$ from

$$\Pr(X_i^{(b)} = u_j | X_i \in [L_i, R_i]) = 1 / \sum_{j=1}^r I(u_j \in [L_i, R_i])$$

over u_j 's that belongs to $[L_i, R_i]$.

• Step 2: Given $X_i^{(b)}$'s, if S_i is right-censored, $T_i^{(b)} = U_i - X_i^{(b)}$ and $\delta_i^{(b)} = 0$. If S_i is interval-censored or exactly observed, generate $T_i^{(b)}$ from

$$\Pr(T_i^{(b)} = v_k^{(b)} | T_i \in [U_i - X_i^{(b)}, V_i - X_i^{(b)}])$$

$$= 1 / \sum_{r=1}^{s} I(v_r^{(b)} \in [U_i - X_i^{(b)}, V_i - X_i^{(b)}])$$

over $v_k^{(b)}$'s that belongs to $[U_i - X_i^{(b)}, V_i - X_i^{(b)}]$, and $\delta_i^{(b)} = 1$

Covariance matrix estimation: Multiple imputation method

- Step 3: Based on the *b*th imputed right-censored data $\{(T_i^{(b)}, \delta_i^{(b)})\}$, compute the usual log-rank statistic and its covariance matrix, $\mathbf{U}^{(b)}$ and $\hat{\boldsymbol{\Sigma}}_{na}^{(b)}$, say.
- Step 4: Repeat Steps 1 to 3 B(>0) times and obtain B pairs of $(\mathbf{U}^{(b)}, \hat{\boldsymbol{\Sigma}}_{na}^{(b)}), b = 1, \dots, B$
- Step 5: Compute the sum of the average of within-imputation covariance matrices and the between-imputation covariance matrix of \mathbf{U} , say $\hat{\boldsymbol{\Sigma}}^*$
- Remark:
 - Replacing $\hat{\Sigma}$ in (4) by $\hat{\Sigma}^*$, test H_0 based on

$$P^* = \mathbf{U}'\mathbf{\hat{\Sigma}}^{*-1}\mathbf{U}$$

• P* reduces to the usual log-rank test for the right-censored data

Design parameters

- Observed intervals for X_i 's by letting L_i and R_i to be a random number from U[0,4] minus and plus a random number from $U\{0,1,\ldots,D\}$
 - D = 1, 2, 3
- Survival times T_i 's are generated from the exponential distributions with hazards e^{α} and $e^{\alpha+\beta}$ for subjects from treatment groups 1 and 2, respectively
 - Observed intervals of S_i 's by letting U_i and V_i to be $X_i + T_i$'s minus and plus a random number from $U\{0, 1, ..., D\}$
 - S_i is right-censored if $U_i \ge 15$
 - α was used to determine the percentage of right-censored observations for the S_i
 - \bullet $\,\beta$ represents the survival difference between the two treatment groups
 - β =0 for the significance level of the tests
 - β =-0.8, -0.4, 0.4 or 0.8 for the powers of the tests

Design parameters

- In order to apply Sun's test to data generated above, discretize L_i , R_i , U_i , and V_i as $L_i^d = \lceil L_i \rceil$, $R_i^d = \lceil R_i \rceil$, $U_i^d = \lceil U_i \rceil$, and $V_i^d = \lceil V_i \rceil$, respectively, where $\lceil a \rceil$ denotes the smallest value of integers greater than or equal to a
- Sample size: n=200(100 subjects from each treatment group)
- Replications: 2,000
- B = 25

Results: Size & power

	D		1			2			3	
β	C_f	0.1	0.3	0.5	0.1	0.3	0.5	0.1	0.3	0.5
-0.8	P^*	1.00	.999	.996	1.00	1.00	.994	1.00	.998	.994
	P^{*d}	1.00	.999	.995	1.00	1.00	.993	1.00	.998	.995
	S	1.00	.999	.996	1.00	1.00	.992	1.00	.997	.990
-0.4	P^*	.780	.673	.561	.759	.685	.562	.706	.642	.554
	P^{*d}	.760	.657	.561	.734	.673	.558	.670	.633	.541
	S	.754	.662	.551	.715	.654	.536	.638	.600	.499
0.0	P^*	.051	.053	.045	.044	.051	.049	.037	.051	.049
	P^{*d}	.045	.051	.044	.039	.048	.047	.032	.044	.046
	S	.043	.051	.043	.039	.046	.044	.030	.035	.039
0.4	P^*	.745	.623	.466	.742	.597	.451	.689	.577	.451
	P^{*d}	.725	.608	.459	.726	.584	.446	.667	.562	.441
	S	.730	.610	.455	.708	.572	.427	.634	.519	.394
8.0	P^*	.999	.992	.946	.999	.990	.935	.997	.985	.920
	P^{*d}	.999	.990	.941	.999	.991	.931	.998	.983	.916
	S	.999	.989	.942	.999	.990	.919	.997	.975	.895

 c_f : Right censoring fraction, P^* : Proposed test, P^{*d} : Proposed test(discrete version), S: Sun(2001)'s test

IBC 2008

AIDS cohort study

- Data taken from Kim, De Gruttola, & Lagakos(1993, BCS)
- 188 patients were infected with HIV during the study period that lasted from 1978 to 1988
- Subjects were classified into two groups according to the amount of blood factor that they received (heavily treated(HT) group vs. lightly treated(LT) group)
- Right censoring fraction in AIDS diagnosis time: 84.8%(LT group), 71.9%(HT group)
- Estimate the survival functions of HIV infection time and AIDS incubation time (i.e time from HIV infection to AIDS diagnosis)
- Compare the survival functions of the AIDS incubation times in two treatment groups
 - B(# of multiple imputation)=200
 - P*=3.2904(P-value=0.0697), S=3.1150(P-value=0.0775)
 - Slightly significant!

Two plots

Estimates of the survival functions of HIV infection time Estimates of the survival functions of AIDS incubation time

. ◀ Return

Summary

- A generalization of usual log-rank test with doubly interval-censored data
- Intuitive model & simple implementation
- Not require joint MLEs as in Sun(2001)'s test
- Unlike Sun's test, applicable to discrete failure time data as well as continuous failure time data
- Proposed test controls well the significance level of the tests & is more powerful than Sun's test

Thank You!