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PAQUID cohort: Interval censoring

Standard estimation of the Cox model does not handle
interval censoring. The time-to-onset of disease is thus
commonly imputed by either (i) the time at diagnostic
visit,1 or (ii) the time at the midpoint of the interval
between that visit and the previous one.2–4 However,
this can lead to biased effect estimates2,5 and may
underestimate standard errors,6 especially if the inter-
vals are wide and of various lengths. Specific tech-
niques for interval-censored data should therefore be
preferred.7,8

Interval censoring further complicates competing
risk analyses. Yet, death is often an important com-
peting event that should be accurately accounted for,
especially in elderly cohorts. To account for death as a
competing event, a cause-specific proportional haz-
ards model can be used.9–12 This simply refers to
using a Cox model censoring for death. More specif-
ically, the time-to-disease onset of subjects who die
before being diagnosed with the disease should be
right-censored at the time-to-death which is usually
known exactly in cohort studies. However, because
the disease status is known at intermittent visits
only, there is an uncertainty on whether the subjects
developed the disease between the last (disease-free)
visit and death. Standard cause-specific analysis thus
consists in censoring the time-to-onset of disease at
the last visit rather than at death. However, subjects
who are censored at time t because of death at time
t’4t may be at higher risk of disease between t and t’,
which induces an underestimation of the disease in-
cidence.13 By contrast, an illness-death model for
interval-censored data allows subjects to develop the
disease between last visit and death or latest news on
vital status.13–16 In addition, the illness-death model
allows simultaneous estimation of the exposure ef-
fects not only on disease and on death in disease-
free subjects, but also on death in diseased subjects.
Although the advantages of the illness-death model

for interval-censored data have been demonstrated
for estimating disease incidence,13,15 its superiority
over the standard (cause-specific) Cox model remains
unclear for estimating the effect of exposures on the
risk of disease.

The objective of the present study is to compare the
results from these different approaches for estimating
the effects of exposures on the risk of disease, when
death is a competing event and the disease status at
death may be unknown. In the next section, we de-
scribe the regression models corresponding to each
approach. A simulation study section then compares
the performance of the regression models, in particu-
lar to investigate how the association between
the exposure and death may affect estimates of the
exposure effect on disease. Finally, an application
to dementia is presented. We compare the results
of the regression models for estimating the effects
of selected risk factors on dementia, using data
from the French elderly population-based PAQUID
cohort.3

Regression models
The regression models differed mostly in the way
they handled interval censoring and competition
with death. To illustrate their difference, we selected
four subjects (Table 1) of the PAQUID study
where 3777 participants aged 65 years or more
were recruited in 1988–90 and then screened for
dementia every 2 or 3 years.3 Because age was a
strong potential confounder and entry into the
cohort did not correspond to any relevant event in
the subject’s life course, all regression models in the
simulations and application used age as the time-scale
and left-truncation to account for delayed entry into
the cohort.17

Table 1 Age in years at follow-up visits and diagnosis of dementia for four selected subjects of the PAQUID cohort, France,
1988–2010. Illustration of the possible configurations in the data with respect to the dementia and death status

Subject

Entry

Follow-up visits

Latest follow-up1 year 3 years 5 years 8 years 10 years 13 years 15 years 17 years 20 years

Age Dem Age Dem Age Dem Age Dem Age Dem Age Dem Age Dem Age Dem Age Dem Age Dem Age Deada

Never diagnosed with dementia and alive at the latest follow-up (n¼ 545, i.e. 15% of subjects in the PAQUID study)

A 66.5 0 N/A N/A 70.5 0 N/A N/A 74.4 0 76.8 0 79.8 0 81.3 0 N/A N/A N/A N/A 88.2 0

Never diagnosed with dementia and died (n¼ 2298, i.e. 63% of subjects in the PAQUID study)

B 70.4 0 71.5 0 73.6 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 85.2 1

Diagnosed with dementia and alive at the latest follow-up (n¼ 193, i.e. 5% of subjects in the PAQUID study)

C 73.1 0 N/A N/A 76.2 0 78.2 0 80.8 0 83.1 1 85.9 1 87.9 1 90.7 1 93.7 1 93.7 0

Diagnosed with dementia and died (n¼ 639, i.e. 17% of subjects in the PAQUID study)

D 78.3 0 N/A N/A N/A N/A 83.4 0 86.9 0 88.5 0 91.2 1 N/A N/A N/A N/A N/A N/A 99.0 1

Dem, indicator of dementia (1 for yes, 0 for no); N/A, missing data because the subject missed the follow-up visit, or not applicable
because the subject died earlier.
aIndicator of vital status at the latest news (1 for dead, 0 for alive).
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Illness-death model vs multi-state model with LTF state

Regression models for interval-censored semi-competing risks data 15

Healthy 
(state 0) 

Diseased 
(state 1) 

Dead 
(state 2) 

그림 5.1. An illness-death model
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Previous works

Leffondré et al. (2013): a semi-parametric illness-death model

Frydman & Szarek (2009): nonparametric ML estimation

Siannis et al. (2007) & Barrett et al. (2011): a multi-sate model with
an unobserved state
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Five-states model

State 0: the health state

State 1: a state to represent an intermediate event (IE)

State 2: the terminal state (absorbing state)

State 3: a state to represent loss to follow-up (LTF) for the
intermediate process

State 4: the unobservable state that represents an intermediate event
experienced after the subject is LTF

cf. Siannis et al. (2007)
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Transition intensities

S = {S(t), t ≥ 0} : a multi-state process

S(t) ∈ {0, 1, 2, 3, 4}
The intensity of a transition from state r to state s at time t is
defined as

λrs(t) = lim
dt→0

Pr(S(t + dt) = s|S(t) = r)

dt
, (r , s) ∈ A

A = {(r , s) : (r , s) = (0, 1), (0, 2), (0, 3), (1, 2), (3, 2), (3, 4), (4, 2)}
λrs(t) = 0, (r , s) /∈ A
λ34(t), λ42(t), and λ32(t) : NOT identifiable ⇒ need assumptions on
both λ34(t) and λ42(t)
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Constraints on λ34(t) and λ42(t)

λ02(t)
λ01(t)

= r λ32(t)λ34(t)
, r > 0

No information in the data concerning the value of r

λ42(t) = λ12(t)

cf. Siannis et al. (2007), Barret et al. (2011)
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Model

Given x and u, the transition intensity of r → s is assumed to be

λkl(t|x, u) = αklγkl t
γkl−1 exp(β′klx + u), (r , s) ∈ A

αkl(γkl) : the scale (shape) parameter of the weibull distribution
βkl : the vector of regression coefficients
u : an unobservable frailty, u ∼ N(0, σ2)

ζ = (α′,γ ′,β′01,β
′
02,β

′
03,β

′
12,β

′
32, σ

2)′ : the vector of parameters to
be estimated

α = (α01, α02, α03, α12, α32)′, γ = (γ01, γ02, γ03, γ12, γ32)′

α34, α42, γ34, γ42,β34,β42 : deterministic from the two constraints
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Cumulative transition intensity functions

The cumulative transition functions for leaving state 0, 1, 3, and 4
between t1 and t2 are given by, respectively,

H0(t1, t2|x, u) =

∫ t2

t1

{λ01(s|x, u) + λ02(s|x, u) + λ03(s|x, u)}ds

=
3∑

r=1

α0r (t
γ0r
2 − t

γ0r
1 ) exp(β′

0rx+ u),

H1(t1, t2|x, u) =

∫ t2

t1

λ12(s|x, u)ds = α12(t
γ12
2 − t

γ12
1 ) exp(β′

12x+ u),

H3(t1, t2|x, u) =

∫ t2

t1

{λ32(s|x, u) + λ34(s|x, u)}ds

= α32(t
γ32
2 − t

γ32
1 ) exp(β′

32x+ u) + α34(t
γ34
2 − t

γ34
1 ) exp(β′

34x+ u),

H4(t1, t2|x, u) =

∫ t2

t1

λ42(s|x, u)ds = α42(t
γ42
2 − t

γ42
1 ) exp(β′

42x+ u)
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Notation

R : time to an IE

T : time to terminal event

L : time to LTF

C : censoring time

H0(s) = {R ∧ L ∧ T > s} : the corresponding history to a subject
who is in state 0 at time s

H3,f (s) = {L = f ,R ∧ T > s, f ≤ s} : the corresponding history to a
subject whose LTF have occurred at time f and who is in state 3 at
time s
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Six routes

Route 1: 0→0; Route 2: 0→2; Route 3: 0→1; Route 4: 0→1→2;
Route 5: 0→3; Route 6: 0→3→2

Iij (i = 1, 2, . . . , n; j = 1, 2, . . . , 6) : an indicator function for subject i
taking route j

Bj = {i : Iij = 1} : a set of subjects taking route j
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Observed data

ai : time at the visit before the diagnostic visit for subject i

bi : time at the diagnostic visit for subject i

ti : time at death or censoring for subject i

Note that

i ∈ B1 ∪ B2 ⇒ ai , bi ≥ ti
i ∈ B3 ∪ B4 ⇒ ai < bi ≤ ti
i ∈ B5 ∪ B6 ⇒ ai < ti , but bi < ti or bi ≥ ti
i ∈ B1 ∪ B3 ∪ B5 ⇒ ti : time at censoring
i ∈ B2 ∪ B4 ∪ B5 ⇒ ti : time at death
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Likelihood

For route 1 (i ∈ B1),

Qi1(ti |xi , ui ) = Pr(Ri ∧ Li ∧ Ti > ti |H0(0), xi , ui )

= exp{−H0(0, ti |xi , ui )}

For route 2 (i ∈ B2),

Qi2(ti |xi , ui ) = Pr(T = ti ,R ∧ L > ti |H0(0), xi , ui )

= Qi1(ti |xi , ui )q02(ti |xi , ui )
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Likelihood

Using the algorithm proposed by Collett (2015), define a subset of the
endpoints of (ai , bi ], i ∈ B3 ∪ B4, as

0 = s0 < s1 < s2 < · · · < sl < sl+1 =∞

s1 : the smallest of the values of bi
sm (m = 2, . . . , l) : the smallest of the values of bi such that ai ≥ sm−1

Define the weight at time sm for subject i as

wim =
dim exp {−H0(0, sm|xi , ui )}λ01(sm|xi , ui )∑l

m′=1 dim′ exp {−H0(0, sm′ |xi , ui )}λ01(s ′m|xi , ui )

dim = I (sm ∈ (ai , bi ])
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Likelihood
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Likelihood

For route 3 (i ∈ B3),

Qi3(ai , bi , ti |xi , ui ) = Pr(Ri ∈ (ai , bi ], Li > ti ,Ti > ti |H0(0), xi , ui )

= exp{−H0(0, ai |xi , ui )}

×
l∑

m=1

[
dimwim exp{−H0(ai , sm|xi , ui )}q01(sm|xi , ui )

× exp{−H1(sm, bi |xi , ui )}
]
× exp{−H1(bi , ti |xi , ui )}

=
l∑

m=1

[
dimwim exp{−H0(0, sm|xi , ui )}q01(sm|xi , ui )

× exp{−H1(sm, ti |xi , ui )}
]

For route 4 (i ∈ B4),

Qi4(ai , bi , ti |xi , ui ) = Pr(Ri ∈ (ai , bi ], Li > ti ,Ri < Ti = ti |H0(0), xi , ui )

= Q3(ai , bi , ti |xi , ui )q12(ti |xi , ui )

J. Kim (Univ Suwon) The KSS Fall Conferenc Nov-4-2016 18 / 31



Likelihood

For route 5 (i ∈ B5),

Qi5(ai , bi , ti |xi , ui ) = Pr(Ri ∧ Ti > ti |H3,ai (ai ), xi , ui )

+Pr(Ri ∈ (ai , ti ],Ti > ti |H3,ai (ai ), xi , ui )

= exp{−H0(0, ai |xi , ui )}q03(ai |xi , ui )
[
exp{−H3(ai , ti |xi , ui )}

+

∫ ti

ai

exp{−H3(ai , s|xi , ui )}q34(s|xi , ui ) exp{−H4(s, ti |xi , ui )}ds
]

For route 6 (i ∈ B6),

Qi6(ai , bi , ti |xi , ui ) = Pr(Ri > Ti ,Ti = ti |H3,ai (ai ), xi , ui )

+Pr(Ri ∈ (ai , ti ],Ri < Ti = ti |H3,ai (ai ), xi , ui )

= exp{−H1(0, ai |xi , ui )}q03(ai |xi , ui )[
exp{−H3(ai , ti |xi , ui )}q32(ti |xi , ui )

+

{∫ ti

ai

exp{−H3(ai , s|xi , ui )}q34(s|xi , ui ) exp{−H4(s, ti |xi , ui )}ds
}

×q42(ti |xi , ui )
]
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Likelihood

Based on the complete data, the likelihood function is defined as

L(ζ) =
n∏

i=1


6∏

j=1

Q
Iij
ij

φ(0, σ2; ui )

φ(·) : pdf of N(0, σ2)
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Parameter estimation

Use the NLMIXED procedure (SAS Institute Inc., 2015)

Using the adaptive Gaussian quadrature proposed by Pinheiro &
Bates (1995), compute the marginal likelihood,

m(ζ) =

∫
· · ·

∫
L(ζ)du1 · · · dun

ζ̂ : a minimizder of f (ζ) = − logm(ζ) using the Newton-Raphson
algorithm
Var(ζ̂) : the inverse of Hessian matrix evaluated at ζ̂
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Simulation setup

IE was assessed at

Scenario 1: 15, 31,. . ., 349, 365(days) with ±N(0, 32) days
Scenario 2: 7, 15, 22, 31,. . ., 334, 36(days) with ±N(0, 32) days

Exponential baseline hazards with γrs = 1

Scale parameters(except α03): α01 = α02 = α32 = 0.002, α12 = 0.001
For α03, 0.001 (LTF%: low); 0.002 (LTF%: medium); 0.008(LTF%:
high)

x : 0-1 binary covariate with a success probability of 0.5

Regression parameters: β01 = β02 = β03 = β12 = β32 = 1

u : N(0, 1) frailty

Fixed censoring at 365(days)

r : 1 for the first constraint

Compare the proposed method with both FDA (FDA, 2007; EMEA,
2006) and naive methods
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Simulated data generation

Step 1: generate T01,T02, and T03

T01 : a solution to Λ01(t) + ln(1− U01) = 0 wrt t, U01 ∼ U[0, 1]
T02 : a solution to Λ02(t) + ln(1− U02) = 0 wrt t, U02 ∼ U[0, 1]
T03 : a solution to Λ03(t) + ln(1− U03) = 0 wrt t, U03 ∼ U[0, 1]
If C ≤ T01 ∧ T02 ∧ T03, censored w/o being relapsed; stop ⇒ Route 1
If T01 = T01 ∧ T02 ∧ T03, relapsed; goto Step 2
If T02 = T01 ∧ T02 ∧ T03, dead w/o being relapsed; stop ⇒ Route 2
If T03 = T01 ∧ T02 ∧ T03, LTF; goto Step 3

Step 2: generate T12

T12 : a solution to Λ12(t) + ln(1− U12) = 0 wrt t,
U12 ∼ U[1− exp{Λ01(T01)}, 1]
If C = T12 ∧ C , censored w/ being relapsed; stop ⇒ Route 3
If T12 = T12 ∧ C , dead w/ being relapsed; stop ⇒ Route 4
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Simulated data generation

Step 3: genertae T32 and T34

T32 : a solution to Λ32(t) + ln(1− U32) = 0 wrt t,
U32 ∼ U[1− exp{−Λ32(T03)}, 1]
T34 : a solution to Λ34(t) + ln(1− U34) = 0 wrt t,
U34 ∼ U[1− exp{−Λ34(T03)}, 1]
If C ≤ T32 ∧ T34, censored after LTF w/ being relapsed; stop ⇒ Route
5
If T32 = T32 ∧ T34, dead after LTF w/ being relapsed; stop ⇒ Route 6
If T34 = T32 ∧ T34, relapsed after LTF; goto Step 4

Step 4: generate T42

T42 : a solution to Λ42(t) + ln(1− U42) = 0 wrt t,
U42 ∼ U[1− exp{−Λ42(T34)}, 1]
If C = T42 ∧ C , censored after LTF w/ being relapsed; stop ⇒ Route 5
If T42 = T42 ∧ C , dead after LTF w/ being relapsed; stop ⇒ Route 6
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Simulation results: Unequal spacing visits

Table 1: The averages of bias(Bias) and standard error(SEM) and the
coverage probability(CP) based on 500 replication with the sample size of
200 when the intermediate event is monitored with an unequal time
interval

1

표 0.1. Comparison of three estimation procedures in terms of the averages of bias(Bias) and standard error(SEM)

and the coverage probability(CP) based on 500 replication with the sample size of 200 when the intermediate event

is monitored with an unequal time interval.

% Proposed FDA Naive

LTF θ Bias SEM CP Bias SEM CP Bias SEM CP

30 β01 0.032 0.301 0.956 -0.107 0.332 0.922 -0.078 0.339 0.928

(13/17) β02 0.003 0.296 0.960 0.021 0.279 0.952 0.046 0.288 0.954

β12 0.038 0.443 0.958 0.048 0.548 0.958 0.097 0.561 0.968

β03 0.016 0.312 0.960

β32 0.012 0.439 0.942

α01 -1.17×10−4 4.11×10−4 0.912 -5.57×10−4 3.45×10−4 0.558 -7.41×10−4 3.06×10−4 0.328

α02 1.70×10−5 4.31×10−4 0.938 9.63×10−6 4.08×10−4 0.942 -8.64×10−6 4.19×10−4 0.944

α12 7.99×10−6 3.58×10−4 0.922 -2.24×10−4 3.42×10−4 0.756 -3.13×10−4 3.08×10−4 0.676

α03 2.22×10−5 4.53×10−4 0.968

α32 1.36×10−4 7.11×10−4 0.950

σ2 0.012 0.236 0.944 0.219 0.352 0.950 0.470 0.379 0.850

표 0.2. Sensitivity analysis of the proposed method depending on the determination of the ratio r in the second

restriction in terms of the average of bias(Bias) and the coverage probability(CP) based on 500 replication with

the sample size of 200 when the proportion of lost-to-follow-up is around 30%.

r

0.2 0.5 2 5

θ Bias CP Bias CP Bias CP Bias CP

β01 -0.038 0.962 -0.003 0.966 0.011 0.946 -0.028 0.926

β02 -0.008 0.954 -0.015 0.954 0.036 0.946 -0.009 0.952

β12 -0.015 0.958 0.009 0.958 0.021 0.952 -0.002 0.960

β03 -0.050 0.938 -0.015 0.974 0.001 0.946 0.001 0.948

β32 -0.019 0.960 -0.041 0.938 0.008 0.950 0.003 0.954

α01 -7.40×10−5 0.920 -9.36×10−5 0.920 -1.08×10−4 0.908 -5.35×10−5 0.918

α02 -7.31×10−6 0.958 5.07×10−5 0.936 -1.71×10−5 0.928 1.85×10−5 0.946

α12 4.76×10−5 0.924 5.53×10−5 0.962 3.21×10−5 0.928 5.28×10−5 0.962

α03 6.72×10−5 0.944 4.79×10−5 0.924 3.96×10−6 0.926 -6.21×10−6 0.938

α32 1.33×10−4 0.938 1.87×10−4 0.942 1.75×10−4 0.950 2.21×10−4 0.962

σ2 -0.071 0.916 -0.080 0.914 -0.057 0.900 -0.064 0.902
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Sensitivity analysis: Choice of r

Table 2: The average of bias(Bias) and the coverage probability(CP)
based on 500 replication with the sample size of 200 when the proportion
of lost-to-follow-up is around 30%

1

표 0.1. Comparison of three estimation procedures in terms of the averages of bias(Bias) and standard error(SEM)

and the coverage probability(CP) based on 500 replication with the sample size of 200 when the intermediate event

is monitored with an unequal time interval.

% Proposed FDA Naive

LTF θ Bias SEM CP Bias SEM CP Bias SEM CP

30 β01 0.032 0.301 0.956 -0.107 0.332 0.922 -0.078 0.339 0.928

(13/17) β02 0.003 0.296 0.960 0.021 0.279 0.952 0.046 0.288 0.954

β12 0.038 0.443 0.958 0.048 0.548 0.958 0.097 0.561 0.968

β03 0.016 0.312 0.960

β32 0.012 0.439 0.942

α01 -1.17×10−4 4.11×10−4 0.912 -5.57×10−4 3.45×10−4 0.558 -7.41×10−4 3.06×10−4 0.328

α02 1.70×10−5 4.31×10−4 0.938 9.63×10−6 4.08×10−4 0.942 -8.64×10−6 4.19×10−4 0.944

α12 7.99×10−6 3.58×10−4 0.922 -2.24×10−4 3.42×10−4 0.756 -3.13×10−4 3.08×10−4 0.676

α03 2.22×10−5 4.53×10−4 0.968

α32 1.36×10−4 7.11×10−4 0.950

σ2 0.012 0.236 0.944 0.219 0.352 0.950 0.470 0.379 0.850

표 0.2. Sensitivity analysis of the proposed method depending on the determination of the ratio r in the second

restriction in terms of the average of bias(Bias) and the coverage probability(CP) based on 500 replication with

the sample size of 200 when the proportion of lost-to-follow-up is around 30%.

r

0.2 0.5 2 5

θ Bias CP Bias CP Bias CP Bias CP

β01 -0.038 0.962 -0.003 0.966 0.011 0.946 -0.028 0.926

β02 -0.008 0.954 -0.015 0.954 0.036 0.946 -0.009 0.952

β12 -0.015 0.958 0.009 0.958 0.021 0.952 -0.002 0.960

β03 -0.050 0.938 -0.015 0.974 0.001 0.946 0.001 0.948

β32 -0.019 0.960 -0.041 0.938 0.008 0.950 0.003 0.954

α01 -7.40×10−5 0.920 -9.36×10−5 0.920 -1.08×10−4 0.908 -5.35×10−5 0.918

α02 -7.31×10−6 0.958 5.07×10−5 0.936 -1.71×10−5 0.928 1.85×10−5 0.946

α12 4.76×10−5 0.924 5.53×10−5 0.962 3.21×10−5 0.928 5.28×10−5 0.962

α03 6.72×10−5 0.944 4.79×10−5 0.924 3.96×10−6 0.926 -6.21×10−6 0.938

α32 1.33×10−4 0.938 1.87×10−4 0.942 1.75×10−4 0.950 2.21×10−4 0.962

σ2 -0.071 0.916 -0.080 0.914 -0.057 0.900 -0.064 0.902
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Sensitivity analysis: Misspecification of frailty distribution

Table 3: The average of bias(Bias) and the coverage probability(CP)
based on 500 replication with the sample size of 200 when the proportion
of lost-to-follow-up is around 30%
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Illustrative example: PAQUID data set

Personnes Ages Quid (PAQUID): Helmer et al. (2001)
A prospective cohort study to investigate the impact of dementia on
the risk of death
3675 subjects aged 65 years or more, living in southwestern France,
were recruited in 1988-90 and then screened for dementia every 2 or 3
years

Instead analyze the ‘Paq1000’ data set included in the R package
‘SmoothHazard’

If time difference between the last visit and the latest follow-up of a
subject is greater than 4 years, the subject is defined as being lost to
follow-up since the last vist

231 were LTF including 159 (68.8%) who died
Among 186 who were diagnosed with dementia, 127 (68.3%) died
Among 583 who were never diagnosed with dementia, 438 (75.1%) died

Covariates: sex: 0=female, 1=male; primary school certificate: 0=w/
, 1=w/o certificate
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Analysis of Paq1000 data set

Table 4: Regression parameter estimates(Est), their standard errors(SE),
and p-values(P) for three estimation procedures

2

표 0.3. Sensitivity analysis of the proposed method depending on the underlying frailty distribution in terms of

the averages of bias(Bias) and the standard error(SEM) and the coverage probability(CP) based on 500 replication

with the sample size of 200 when the proportion of lost-to-follow-up is around 30%.

N(0, 2) t(4) U(−2.45, 2.45) G(0.877, 2.23)

θ Bias SEM CP Bias SEM CP Bias SEM CP Bias SEM CP

β01 -0.059 0.335 0.958 -0.003 0.326 0.936 -0.043 0.343 0.952 -0.089 0.316 0.948

β02 -0.007 0.328 0.950 0.007 0.320 0.946 -0.020 0.337 0.936 -0.053 0.310 0.944

β12 -0.054 0.461 0.956 0.046 0.466 0.952 -0.039 0.463 0.958 0.015 0.429 0.958

β03 -0.007 0.345 0.940 -0.009 0.336 0.942 0.010 0.354 0.948 -0.043 0.327 0.960

β32 0.015 0.482 0.946 0.065 0.470 0.960 -0.072 0.496 0.934 -0.047 0.452 0.948

α01 -3.81 4.72 0.928 -8.82 4.47 0.906 -1.15 4.65 0.898 9.95 4.75 0.958

×10−5 ×10−4 ×10−5 ×10−4 ×10−4 ×10−4 ×10−5 ×10−4

α02 8.14 4.94 0.930 2.66 4.68 0.952 1.25 4.89 0.920 1.90 4.90 0.966

×10−5 ×10−4 ×10−5 ×10−4 ×10−5 ×10−4 ×10−4 ×10−4

α12 8.81 3.88 0.944 -3.42 3.54 0.890 1.01 3.90 0.946 1.54 3.88 0.974

×10−5 ×10−4 ×10−5 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4

α03 4.86 5.09 0.960 4.63 4.91 0.944 -4.72 4.98 0.920 2.01 5.16 0.964

×10−5 ×10−4 ×10−5 ×10−4 ×10−5 ×10−4 ×10−4 ×10−4

α32 1.95 7.98 0.942 1.20 7.50 0.954 2.81 8.53 0.954 5.83 8.75 0.970

×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4 ×10−4

σ2 -0.147 0.355 0.878 -0.308 0.360 0.588 0.040 0.377 0.954 -0.621 0.280 0.402

표 0.4. Regression parameter estimates(Est), their standard errors(SE), and p-values(P) for three estimation

procedures

Proposed FDA Naive

Covariate θ Est SE P Est SE P Est SE P

Sex β011 -0.387 0.156 0.019 -0.376 0.158 0.023 -0.372 0.158 0.024

β021 0.371 0.097 < 0.001 0.224 0.083 0.011 0.224 0.083 0.011

β121 0.365 0.183 0.055 0.404 0.193 0.044 0.405 0.193 0.044

β031 -0.200 0.137 0.155

β321 0.190 0.177 0.292

Certificate β012 -0.366 0.194 0.068 -0.357 0.195 0.076 -0.357 0.195 0.077

β022 0.025 0.113 0.827 8.80 0.097 0.928 9.36 0.097 0.924

×10−3 ×10−3

β122 -0.260 0.239 0.284 -0.298 0.256 0.253 -0.297 0.256 0.254

β032 -0.015 0.157 0.922

β322 0.202 0.206 0.334

σ2 4.55 6.19 6.10 8.24 6.59 8.41

×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3
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Concluding remarks

Propose a Cox-type transition intensity model with a frailty to analyze
the semi-competing risks data with a missing intermediate event

Based on the simulation results, the proposed method satisfied the
nominal level of CP

However, based on both FDA and naive methods, CPs of the regression
parameter corresponding to the transition of 0→ 1 were less than 0.95
as the percentage of LTF increases
Those of the transition of 1→ 2 are greater than 0.95

Moreover the proposed method was robust to the choice of r and a
misspecification of the underlying frailty distribution
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Thank you!
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