Analysis of interval-censored semi-competing risks data with missing intermediate events

Jinheum Kim¹ & Jayoun Kim²

 $^1 \rm Department$ of Applied Statistics, University of Suwon $^2 \rm Research$ Coordinating Center, Konkuk University Medical Center

May 12, 2017

J. Kim (Univ Suwon)

The KDISS Spring Conferenc

May-12-2017 1 / 34

Outline

- Semi-competing risks data? Interval censoring?
- Model specification
- Likelihood construction
- Simulation studies
- Illustrative example: PAQUID data
- Concluding remarks

- 4 回 ト - 4 回 ト

Representation on semi-competing risks data

J. Kim (Univ Suwon)

The KDISS Spring Conferenc

May-12-2017 3 / 34

PAQUID cohort: Interval censoring

 Table 1
 Age in years at follow-up visits and diagnosis of dementia for four selected subjects of the PAQUID cohort, France, 1988–2010. Illustration of the possible configurations in the data with respect to the dementia and death status

	Follow-up visits												
	Entry	1 year	3 years	5 years	8 years	10 years	13 years	15 years	17 years	17 years 20 years		follow-up	
Subject	Age Dem	Age Dem	Age Dem	Age Dem	Age Dem	Age Dem	Age Dem	Age Dem	Age Dem	Age Dem	Age	Dead ^a	
Never diag	lever diagnosed with dementia and alive at the latest follow-up (n = 545, i.e. 15% of subjects in the PAQUID study)												
А	66.5 0	N/A N/A	70.5 0	N/A N/A	74.4 0	76.8 0	79.8 0	81.3 0	N/A N/A	N/A N/A	88.2	0	
Never diagnosed with dementia and died ($n = 2298$, i.e. 63% of subjects in the PAQUID study)													
В	70.4 0	71.5 0	73.6 0	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	85.2	1	
Diagnosed	with demen	tia and alive	at the latest	follow-up (a	n=193, i.e.	5% of subject	s in the PAG	QUID study)					
С	73.1 0	N/A N/A	76.2 0	78.2 0	80.8 0	83.1 1	85.9 1	87.9 1	90.7 1	93.7 1	93.7	0	
Diagnosed	with demen	tia and died	(<i>n</i> = 639, i.e.	17% of subj	ects in the I	PAQUID stud	y)						
D	78.3 0	N/A N/A	N/A N/A	83.4 0	86.9 0	88.5 0	91.2 1	N/A N/A	N/A N/A	N/A N/A	99.0	1	

Dem, indicator of dementia (1 for yes, 0 for no); N/A, missing data because the subject missed the follow-up visit, or not applicable because the subject died earlier.

^aIndicator of vital status at the latest news (1 for dead, 0 for alive).

イロト イポト イヨト イヨト

Illness-death model vs multi-state model with LTF state

J. Kim (Univ Suwon)

The KDISS Spring Conferenc

May-12-2017 5 / 34

Previous works

- Leffondré et al. (2013): a semi-parametric illness-death model
- Frydman & Szarek (2009): nonparametric ML estimation
- Siannis et al. (2007) & Barrett et al. (2011): a multi-sate model with an unobserved state

(日) (同) (三) (三)

Five-states model

- State 0: the health state
- State 1: a state to represent an intermediate event (IE)
- State 2: the terminal state (absorbing state)
- State 3: a state to represent loss to follow-up (LTF) for the intermediate process
- State 4: the unobservable state that represents an intermediate event experienced after the subject is LTF
- cf. Siannis et al. (2007)

Transition intensities

- S = {S(t), t ≥ 0} : a multi-state process
 S(t) ∈ {0, 1, 2, 3, 4}
- The intensity of a transition from state *r* to state *s* at time *t* is defined as

$$\lambda_{rs}(t) = \lim_{dt \to 0} rac{\Pr(S(t+dt) = s | S(t) = r)}{dt}, \ (r,s) \in \mathcal{A}$$

- $\mathcal{A} = \{(r,s) : (r,s) = (0,1), (0,2), (0,3), (1,2), (3,2), (3,4), (4,2)\}$ • $\lambda_{rs}(t) = 0, \ (r,s) \notin \mathcal{A}$
- $\lambda_{34}(t), \lambda_{42}(t)$, and $\lambda_{32}(t)$: NOT identifiable \Rightarrow need assumptions on both $\lambda_{34}(t)$ and $\lambda_{42}(t)$

イロト イポト イヨト イヨト

Constraints on $\lambda_{34}(t)$ and $\lambda_{42}(t)$

•
$$\lambda_{42}(t) = \lambda_{12}(t)$$

• cf. Siannis et al. (2007), Barrett et al. (2011)

(日) (周) (三) (三)

Model

• Given **x** and u, the transition intensity of $r \rightarrow s$ is assumed to be

$$\lambda_{rs}(t|\mathbf{x},u) = \gamma(lpha_{rs} heta_{rs}t^{m{ heta}_{rs}-1} + m{eta}_{rs}'\mathbf{x}), \ (r,s) \in \mathcal{A}$$

- $\alpha_{rs}(\theta_{rs})$: the scale (shape) parameter of the weibull distribution
- β_{rs} : the vector of regression coefficients
- $\gamma = \exp(u)$: an unobservable log-normal frailty, $u \sim N(0, \sigma^2)$
- $\zeta = (\alpha', \theta', \beta'_{01}, \beta'_{02}, \beta'_{03}, \beta'_{12}, \beta'_{32}, \sigma^2)'$: the vector of parameters to be estimated
 - $\boldsymbol{\alpha} = (\alpha_{01}, \alpha_{02}, \alpha_{03}, \alpha_{12}, \alpha_{32})', \ \boldsymbol{\theta} = (\theta_{01}, \theta_{02}, \theta_{03}, \theta_{12}, \theta_{32})'$
 - $\alpha_{34}, \alpha_{42}, \theta_{34}, \theta_{42}, \beta_{34}, \beta_{42}$: deterministic from the two constraints

イロト イポト イヨト イヨト

Cumulative transition intensity functions

• The cumulative transition functions for leaving state 0, 1, 3, and 4 between t₁ and t₂ are given by, respectively,

$$\begin{split} H_0(t_1, t_2 | \mathbf{x}, u) &= \int_{t_1}^{t_2} \{ \lambda_{01}(s | \mathbf{x}, u) + \lambda_{02}(s | \mathbf{x}, u) + \lambda_{03}(s | \mathbf{x}, u) \} ds \\ &= \sum_{r=1}^3 \gamma \left\{ \alpha_{0r} \left(t_2^{\theta_{0r}} - t_1^{\theta_{0r}} \right) + (\beta'_{0r} \mathbf{x})(t_2 - t_1) \right\}, \\ H_1(t_1, t_2 | \mathbf{x}, u) &= \int_{t_1}^{t_2} \lambda_{12}(s | \mathbf{x}, u) ds = \gamma \left\{ \alpha_{12} \left(t_2^{\theta_{12}} - t_1^{\theta_{12}} \right) + (\beta'_{12} \mathbf{x})(t_2 - t_1) \right\}, \\ H_3(t_1, t_2 | \mathbf{x}, u) &= \int_{t_1}^{t_2} \{ \lambda_{32}(s | \mathbf{x}, u) + \lambda_{34}(s | \mathbf{x}, u) \} ds \\ &= \gamma \left\{ \alpha_{32} \left(t_2^{\theta_{32}} - t_1^{\theta_{32}} \right) + (\beta'_{32} \mathbf{x} + \beta'_{34} \mathbf{x})(t_2 - t_1) + \alpha_{34} \left(t_2^{\theta_{34}} - t_1^{\theta_{34}} \right) \right\} \\ H_4(t_1, t_2 | \mathbf{x}, u) &= \int_{t_1}^{t_2} \lambda_{42}(s | \mathbf{x}, u) ds = \gamma \left\{ \alpha_{42} \left(t_2^{\theta_{42}} - t_1^{\theta_{42}} \right) + (\beta'_{42} \mathbf{x})(t_2 - t_1) \right\}. \end{split}$$

J. Kim (Univ Suwon)

May-12-2017 11 / 34

(日) (同) (三) (三)

Notation

- R : time to an IE
- T : time to terminal event
- L : time to LTF
- C : censoring time
- *H*₀(*s*) = {*R* ∧ *L* ∧ *T* > *s*} : the corresponding history to a subject who is in state 0 at time *s*
- $\mathcal{H}_{3,f}(s) = \{L = f, R \land T > s, f \leq s\}$: the corresponding history to a subject whose LTF have occurred at time f and who is in state 3 at time s

- 4 同 6 4 日 6 4 日 6

Six routes

- Route 1: $0 \rightarrow 0$; Route 2: $0 \rightarrow 2$; Route 3: $0 \rightarrow 1$; Route 4: $0 \rightarrow 1 \rightarrow 2$; Route 5: $0 \rightarrow 3$; Route 6: $0 \rightarrow 3 \rightarrow 2$
- *I_{ij}* (*i* = 1, 2, ..., *n*; *j* = 1, 2, ..., 6) : an indicator function for subject *i* taking route *j*
- $\mathcal{B}_j = \{i : I_{ij} = 1\}$: a set of subjects taking route j

Observed data

- a_i : time at the visit before the diagnostic visit for subject *i*
- b_i : time at the diagnostic visit for subject *i*
- t_i : time at death or censoring for subject i
- Note that

•
$$i \in \mathcal{B}_1 \cup \mathcal{B}_2 \Rightarrow a_i, b_i \ge t_i$$

• $i \in \mathcal{B}_3 \cup \mathcal{B}_4 \Rightarrow a_i < b_i \le t_i$
• $i \in \mathcal{B}_5 \cup \mathcal{B}_6 \Rightarrow a_i < t_i$, but $b_i < t_i$ or $b_i \ge t_i$
• $i \in \mathcal{B}_1 \cup \mathcal{B}_3 \cup \mathcal{B}_5 \Rightarrow t_i$: time at censoring

• $i \in \mathcal{B}_2 \cup \mathcal{B}_4 \cup \mathcal{B}_5 \Rightarrow t_i$: time at death

▲ # ↓ ★ ∃ ★

• For route 1 ($i \in \mathcal{B}_1$),

$$\begin{aligned} Q_{i1}(t_i|\mathbf{x}_i, u_i) &= & \mathsf{Pr}(R_i \wedge L_i \wedge T_i > t_i | \mathcal{H}_0(0), \mathbf{x}_i, u_i) \\ &= & \exp\{-\mathcal{H}_0(0, t_i|\mathbf{x}_i, u_i)\} \end{aligned}$$

• For route 2 ($i \in \mathcal{B}_2$),

$$\begin{aligned} Q_{i2}(t_i|\mathbf{x}_i, u_i) &= & \mathsf{Pr}(T = t_i, R \land L > t_i | \mathcal{H}_0(0), \mathbf{x}_i, u_i) \\ &= & Q_{i1}(t_i|\mathbf{x}_i, u_i) \lambda_{02}(t_i|\mathbf{x}_i, u_i) \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

Using the algorithm proposed by Collett (2015), define a subset of the endpoints of (a_{i'}, b_{i'}], i' ∈ B₃ ∪ B₄, as

$$0 = s_0 < s_1 < s_2 < \cdots < s_l < s_{l+1} = \infty$$

- s_1 : the smallest of the values of $b_{i'}$
- s_m (m = 2, ..., l) : the smallest of the values of $b_{i'}$ such that $a_{i'} \ge s_{m-1}$
- Define the weight at time s_m for subject i' as

$$w_{i'm} = \frac{d_{i'm} \exp\left\{-H_0(0, s_m | \mathbf{x}_{i'}, u_{i'})\right\} \lambda_{01}(s_m | \mathbf{x}_{i'}, u_{i'})}{\sum_{m'=1}^{l} d_{i'm'} \exp\left\{-H_0(0, s_{m'} | \mathbf{x}_{i'}, u_{i'})\right\} \lambda_{01}(s_{m'} | \mathbf{x}_{i'}, u_{i'})}$$

• $d_{i'm} = I(s_m \in (a_{i'}, b_{i'}])$

May-12-2017 17 / 34

• For route 3 ($i \in \mathcal{B}_3$), $Q_{i3}(a_i, b_i, t_i | \mathbf{x}_i, u_i) = \Pr(R_i \in (a_i, b_i], L_i > t_i, T_i > t_i | \mathcal{H}_0(0), \mathbf{x}_i, u_i))$ $= \exp\{-H_0(0, a_i | \mathbf{x}_i, u_i)\}$ $\times \sum_{m=1}^{l} [d_{im}w_{im} \exp\{-H_0(a_i, s_m | \mathbf{x}_i, u_i)\}\lambda_{01}(s_m | \mathbf{x}_i, u_i) \\ \times \exp\{-H_1(s_m, b_i | \mathbf{x}_i, u_i)\}] \exp\{-H_1(b_i, t_i | \mathbf{x}_i, u_i)\}$ $= \sum_{m=1}^{7} [d_{im} w_{im} \exp\{-H_0(0, s_m | \mathbf{x}_i, u_i)\} \lambda_{01}(s_m | \mathbf{x}_i, u_i)$ $\times \exp\{-H_1(s_m, t_i | \mathbf{x}_i, u_i)\}\}$

For route 4 (*i* ∈ B₄),

$$\begin{array}{lll} Q_{i4}(a_i, b_i, t_i | \mathbf{x}_i, u_i) &= & \mathsf{Pr}(R_i \in (a_i, b_i], L_i > t_i, R_i < T_i = t_i | \mathcal{H}_0(0), \mathbf{x}_i, u_i) \\ &= & Q_3(a_i, b_i, t_i | \mathbf{x}_i, u_i) \lambda_{12}(t_i | \mathbf{x}_i, u_i) \end{array}$$

E SQA

くほと くほと くほと

• For route 5
$$(i \in \mathcal{B}_5)$$
,
 $Q_{i5}(a_i, b_i, t_i | \mathbf{x}_i, u_i) = \Pr(R_i \land T_i > t_i | \mathcal{H}_{3, a_i}(a_i), \mathbf{x}_i, u_i)$
 $+ \Pr(R_i \in (a_i, t_i], T_i > t_i | \mathcal{H}_{3, a_i}(a_i), \mathbf{x}_i, u_i)$
 $= \exp\{-H_0(0, a_i | \mathbf{x}_i, u_i)\}\lambda_{03}(a_i | \mathbf{x}_i, u_i) \left[\exp\{-H_3(a_i, t_i | \mathbf{x}_i, u_i)\}\right]$
 $+ \int_{a_i}^{t_i} \exp\{-H_3(a_i, s | \mathbf{x}_i, u_i)\}\lambda_{34}(s | \mathbf{x}_i, u_i) \exp\{-H_4(s, t_i | \mathbf{x}_i, u_i)\}ds$

• For route 6
$$(i \in \mathcal{B}_{6})$$
,
 $Q_{i6}(a_{i}, b_{i}, t_{i} | \mathbf{x}_{i}, u_{i}) = \Pr(R_{i} > T_{i}, T_{i} = t_{i} | \mathcal{H}_{3,a_{i}}(a_{i}), \mathbf{x}_{i}, u_{i})$
 $+ \Pr(R_{i} \in (a_{i}, t_{i}], R_{i} < T_{i} = t_{i} | \mathcal{H}_{3,a_{i}}(a_{i}), \mathbf{x}_{i}, u_{i})$
 $= \exp\{-H_{1}(0, a_{i} | \mathbf{x}_{i}, u_{i})\}\lambda_{03}(a_{i} | \mathbf{x}_{i}, u_{i})$
 $\left[\exp\{-H_{3}(a_{i}, t_{i} | \mathbf{x}_{i}, u_{i})\}\lambda_{32}(t_{i} | \mathbf{x}_{i}, u_{i})$
 $+ \left\{\int_{a_{i}}^{t_{i}} \exp\{-H_{3}(a_{i}, s | \mathbf{x}_{i}, u_{i})\}\lambda_{34}(s | \mathbf{x}_{i}, u_{i}) \exp\{-H_{4}(s, t_{i} | \mathbf{x}_{i}, u_{i})\}ds\right\}$

The KDISS Spring Conferenc

May-12-2017 19 / 34

• Based on the complete data, the likelihood function is defined as

$$L(\boldsymbol{\zeta}) = \prod_{i=1}^{n} \left\{ \prod_{j=1}^{6} Q_{ij}^{l_{ij}} \right\} \phi(0, \sigma^2; u_i)$$

• $\phi(\cdot)$: *pdf* of $N(0, \sigma^2)$

(日) (同) (三) (三)

Parameter estimation

- Use the NLMIXED procedure (SAS Institute Inc., 2015)
- Using the adaptive importance sampling proposed by Pinheiro & Bates (1995), compute the marginal likelihood,

$$m(\zeta) = \int \cdots \int L(\zeta) du_1 \cdots du_n$$

- $\hat{\zeta}$: a minimizder of $f(\zeta) = -\log m(\zeta)$ using the iterative quasi-Newton algorithm
- $\mathsf{Var}(\hat{\boldsymbol{\zeta}})$: the inverse of Hessian matrix evaluated at $\hat{\boldsymbol{\zeta}}$

イロト イポト イヨト イヨト

- IE was assessed at 15, 31,..., 166, 181(days) with $\pm N(0,5^2)$ days
- Exponential baseline hazards with $\theta_{rs} = 1$
- x : 0-1 binary covariate with a success probability of 0.5
- $\gamma = \exp(u)$: $u \sim N(0, 0.1)$ frailty
- Fixed censoring at 181(days)
- r : 1 for the first constraint

Simulation setup: Regression parameters

Table 0.	.1 Regression para	METERS IN THE DIF	FERENT SCENARIOS	OF THE SIMULATION	STUDY
Scenario	β_{01}	β_{02}	β_{12}	β_{03}	β_{32}
1	0.004	0.004	0.004	0.006	0.006
2	0.004	0.006	0.006	0.006	0.006
3	0.004	0.004	0.006	0.006	0.006
4	0.004	0.006	0.008	0.006	0.006
5	0.004	0.004	0.002	0.006	0.006
6	0.004	0.006	0.004	0.006	0.006

J. Kim (Univ Suwon)

The KDISS Spring Conferenc

May-12-2017 23 / 34

Simulation setup: Scale parameters of the weibull distribution

Table 0.2 Scale parameters of the weibull distribution in the different death rates of the simulation study

Death rate	α_{01}	α_{02}	α_{12}	α_{03}	α_{32}
Low	0.002	0.001	0.0005	0.004	0.001
Modertae	0.002	0.002	0.001	0.004	0.002
High	0.002	0.003	0.0015	0.004	0.003

(日) (同) (三) (三)

Simulated data generation

• Step 1: generate R, T, and Lf

- R : a solution to $\Lambda_{01}(t|x,u) + \ln(1-U_{01}) = 0$ wrt t, $U_{01} \sim U[0,1]$
- T : a solution to $\Lambda_{02}(t|x,u) + \ln(1-U_{02}) = 0$ wrt t, $U_{02} \sim U[0,1]$
- L : a solution to $\Lambda_{03}(t|x,u) + \ln(1-U_{03}) = 0$ wrt t, $U_{03} \sim U[0,1]$
- If $C \leq R \wedge T \wedge L$, censored w/o being relapsed; stop \Rightarrow Route 1
- If $R = R \land T \land L$, relapsed; goto Step 2
- If $T = R \land T \land L$, dead w/o being relapsed; stop \Rightarrow Route 2
- If $L = R \land T \land L$, LTF; goto Step 3
- Step 2: update T
 - T: a solution to $\Lambda_{12}(t|x, u) + \ln(1 U_{12}) = 0$ wrt t, $U_{12} \sim U[1 - \exp\{-\Lambda_{01}(R|x, u)\}, 1]$
 - If $C = T \land C$, censored w/ being relapsed; stop \Rightarrow Route 3
 - If $T = T \land C$, dead w/ being relapsed; stop \Rightarrow Route 4

Simulated data generation

• Step 3: update T and R

- T: a solution to $\Lambda_{32}(t|x, u) + \ln(1 U_{32}) = 0$ wrt t, $U_{32} \sim U[1 - \exp\{-\Lambda_{32}(L|x, u)\}, 1]$
- R: a solution to $\Lambda_{34}(t|x, u) + \ln(1 U_{34}) = 0$ wrt t, $U_{34} \sim U[1 - \exp\{-\Lambda_{34}(L|x, u)\}, 1]$
- If $C \leq T \wedge R$, censored after LTF w/o being relapsed; stop \Rightarrow Route 5
- If $T = T \land R$, dead after LTF w/o being relapsed; stop \Rightarrow Route 6
- If $R = T \land R$, relapsed after LTF; goto Step 4
- Step 4: update T
 - T: a solution to $\Lambda_{42}(t|x, u) + \ln(1 U_{42}) = 0$ wrt t, $U_{42} \sim U[1 - \exp\{-\Lambda_{42}(R|x, u)\}, 1]$
 - If $C = T \land C$, censored after LTF w/ being relapsed; stop \Rightarrow Route 5
 - If $T = T \land C$, dead after LTF w/ being relapsed; stop \Rightarrow Route 6

Simulation results: Average percentage of death event rates

Scenario	Route	Low	Moderate	High
1	2	22	28	31
	4	5	8	6
	6	17	19	19
	2 or 4 or 6	15	18	19
2	2	20	26	31
	4	7	8	7
	6	17	22	20
	2 or 4 or 6	15	18	19
3	2	18	24	29
	4	10	10	6
	6	15	18	20
	2 or 4 or 6	14	17	18
4	2	27	33	38
	4	8	8	7
	6	15	15	14
	2 or 4 or 6	16	18	19
5	2	13	20	25
	4	3	7	7
	6	11	15	15
	2 or 4 or 6	9	14	16
6	2	25	28	33
	4	8	8	8
	6	13	17	22
	2 or 4 or 6	15	18	21

Table 0.3 Average percentage of death event rates in the different scenarios of the simulation study based on 500 data sets of 200 subjects each

J. Kim (Univ Suwon)

May-12-2017 27 / 34

Simulation results: Empirical coverage rates

Low Moderate High														
			R.Bias	SD	SEM	CP	R.Bias	SD	SEM	CP	R.Bias	SD	SEM	CP
Scenario	Param.	True	(%)	$(\times 10^5)$	$(\times 10^5)$	(%)	(%)	$(\times 10^5)$	$(\times 10^5)$	(%)	(%)	$(\times 10^5)$	$(\times 10^5)$	(%)
1	β_{01}	0.004	-8.1	109	116	94.0	-10.3	122	119	90.6	-10.1	115	121	93.2
	\$02	0.004	2.7	103	107	94.6	2.5	122	122	94.6	3.1	131	137	96.6
	Bos	0.006	-2.8	170	173	96.2	-3.3	178	175	92.8	-5.1	187	176	92.2
	β_{12}	0.004	-10.9	111	112	91.0	-9.7	131	127	92.2	-7.0	142	149	96.2
	\$32	0.006	4.5	148	157	95.8	9.8	173	179	96.6	6.3	192	196	96.4
	σ^2	0.1	102.0	16935	12758	90.0	84.9	14554	11999	91.8	65.5	13395	11531	92.6
2	β_{01}	0.004	-10.9	117	118	91.4	-10.5	117	123	92.6	-12.9	123	124	93.0
	\$02	0.006	-0.4	114	124	95.6	-0.7	140	139	94.4	0.7	159	153	93.4
	Bos	0.006	-2.0	183	176	92.8	-1.9	172	179	96.2	-3.2	185	181	92.4
	β_{12}	0.006	-9.5	143	150	91.0	-6.7	182	167	90.6	-5.6	186	186	94.4
	B32	0.006	6.8	150	154	96.2	7.9	196	177	95.0	9.1	200	194	96.8
	σ^2	0.1	82.2	16444	12239	89.6	75.5	17585	11683	86.4	62.0	16508	11178	87.2
3	Boi	0.004	-13.5	103	113	92.4	-13.1	115	118	91.0	-13.2	124	120	89.6
	\$02	0.004	1.8	99	105	95.8	1.1	118	120	96.2	0.3	139	135	95.8
	β_{03}	0.006	-4.4	185	170	93.0	-2.4	181	173	93.0	-3.4	178	176	95.0
	B12	0.006	-10.3	146	141	88.4	-7.6	153	158	91.8	-4.8	159	174	95.6
	\$32	0.006	7.1	143	155	96.6	6.6	193	177	95.4	7.8	202	196	94.4
	σ^2	0.1	112.8	19191	12698	88.6	90.9	17250	12046	87.6	62.9	15384	11143	86.8
4	β_{01}	0.004	-12.7	117	117	90.6	-13.2	117	120	89.4	-12.3	131	125	89.8
	Boz	0.006	1.9	130	125	94.8	0.1	134	137	95.2	3.2	153	155	97.6
	Bos	0.006	-5.6	176	174	93.4	-6.7	184	177	90.8	-2.5	191	183	94.2
	B12	0.008	-11.7	167	179	91.0	-6.4	195	200	94.6	-9.5	216	215	90.8
	B32	0.006	8.0	170	156	94.0	8.4	185	175	96.2	8.6	193	195	96.8
	σ^2	0.1	81.2	15998	12026	92.4	88.7	16223	12005	89.2	80.3	15959	11828	92.8
5	Boi	0.004	-3.9	110	118	95.8	-6.8	118	119	92.8	-5.2	122	124	94.6
	B02	0.004	2.7	104	108	96.4	-0.1	125	121	95.2	5.0	149	139	95.8
	BOB	0.006	0.0	178	174	95.2	-1.6	175	174	96.2	-0.9	167	180	96.4
	β_{12}	0.002	-11.6	81	82	94.2	-12.1	97	100	95.6	-7.4	122	120	95.2
	\$32	0.006	2.6	166	157	95.2	5.2	187	177	93.2	4.4	219	198	93.8
	σ^2	0.1	100.3	21007	13223	89.4	100.3	21007	13223	89.4	72.1	15134	11907	90.2
6	β_{01}	0.004	-8.1	129	121	92.4	-7.0	127	125	92.6	-9.6	129	126	92.4
	\$02	0.006	-1.9	127	124	94.6	-1.6	134	140	96.0	-1.9	156	152	94.0
	B03	0.006	-0.1	182	179	94.8	0.4	179	183	95.8	-2.7	187	183	94.2
	B12	0.004	-7.8	114	120	93.2	-8.1	124	134	94.0	-6.0	142	155	95.4
	B32	0.006	3.6	157	153	95.8	5.0	171	174	95.6	6.2	180	191	97.0
	σ^2	0.1	77.4	17865	12317	90.4	97.5	19692	12513	86.8	69.4	15080	11906	93.0
									4.5	1 1 4				0

Table 0.4 Empirical results of the proposed method in terms of the average of the relative bias(R.Bias) and the standard errors(SEM) and the coverage probability(CP) based on 500 data sets of 200 subjects each

J. Kim (Univ Suwon)

May-12-2017 28 / 34

Sensitivity analysis: Choice of r

Table 0.5 Sensitivity analysis of the proposed method depending on the determination of the ratio r in terms of the average of the relative bias(R.Bias) and the standard errors(SEM) and the coverage probability(CP) based on 500 data sets of 200 subjects each

		r											
		0.5				0.75			1.5			2	
		R.Bias	SEM	CP									
Param.	True	(%)	$(\times 10^5)$	(%)									
β_{01}	0.004	-13.1	118	90.4	-13.5	118	90.2	-13.3	118	91.6	-14.2	118	91.0
β_{02}	0.004	1.4	121	97.2	0.0	120	95.8	1.4	121	96.2	3.5	121	95.4
β_{03}	0.006	-1.3	174	91.4	-1.4	174	92.6	-1.8	174	92.4	-2.6	173	92.0
β_{12}	0.006	-8.2	158	90.8	-9.0	157	91.4	-8.5	158	91.4	-9.6	157	90.6
β_{32}	0.006	7.0	178	95.2	7.4	178	93.6	8.5	179	95.2	7.2	177	95.2
σ^2	0.1	89.8	12307	92.4	100.8	12424	89.2	100.4	12472	86.4	91.7	12207	88.2

イロト イヨト イヨト イヨト

Sensitivity analysis: Misspecification of frailty distribution

Table 0.6 Sensitivity analysis of the proposed method depending on the underlying frailty distribution in terms of the average of the relative bias(R.Bias) and the standard errors(SEM) and the coverage probability(CP) based on 500 data sets of 200 subjects each

		Ν	I(0, 0.2)		U(-0	0.775, 0.7	75)	D	DE(0.316)			G(5.483, 0.2)		
		R.Bias	SEM	CP										
Param.	True	(%)	$(\times 10^5)$	(%)										
β_{01}	0.004	-14.3	119	86.0	-14.3	119	90.4	-13.5	118	89.4	-15.3	119	88.2	
β_{02}	0.004	3.5	123	97.2	3.4	124	95.8	1.8	122	92.8	1.0	123	96.4	
β_{03}	0.006	-7.2	175	91.2	-4.3	176	95.0	-6.4	174	92.0	-7.4	174	90.0	
β_{12}	0.006	-8.7	160	92.6	-6.0	161	91.2	-6.3	162	93.0	-6.3	161	95.2	
β_{32}	0.006	6.8	182	95.2	9.7	184	95.8	6.9	181	96.4	9.6	183	96.6	
σ^2	0.2	29.8	13401	83.2	27.8	13288	86.0	21.2	13005	81.2	24.8	13142	83.4	

< ロ > < 同 > < 三 > < 三

Illustrative example: PAQUID data set

- Personnes Ages Quid (PAQUID): Helmer et al. (2001)
 - A prospective cohort study to investigate the impact of dementia on the risk of death
 - 3675 subjects aged 65 years or more, living in southwestern France, were recruited in 1988-90 and then screened for dementia every 2 or 3 years
- Instead analyze the 'Paq1000' data set included in the R package 'SmoothHazard'
- If time difference between the last visit and the latest follow-up of a subject is greater than 4 years, the subject is defined as being lost to follow-up since the last vist
 - 231 were LTF including 159 (68.8%) who died
 - Among 186 who were diagnosed with dementia, 127 (68.3%) died
 - Among 583 who were never diagnosed with dementia, 438 (75.1%) died
- Covariates: sex: 0=female, 1=male; primary school certificate: 0=w/, 1=w/o certificate

Analysis of Paq1000 data set

	CHOICE OF 7												
							r						
			0.5			1			1.5		2		
		Est	SE		Est	SE		Est	SE		Est	SE	
Covariate	ζ	$(\times 10^4)$	$(\times 10^4)$	P	$(\times 10^4)$	$(\times 10^4)$	P	$(\times 10^4)$	$(\times 10^4)$	P	$\times 10^4$	$(\times 10^4)$	P
	β_{011}	-7.7	3.3	0.028	-7.7	3.3	0.028	-7.6	3.3	0.028	-7.6	3.3	0.028
Sex	β_{021}	19.5	5.4	0.001	19.5	5.4	0.001	19.5	5.4	0.001	19.6	5.4	0.001
	β_{031}	-5.4	3.7	0.151	-5.4	3.7	0.152	-5.4	3.7	0.151	-5.4	3.7	0.152
	β_{121}	466.2	301.5	0.132	470.6	301.4	0.128	470.8	301.1	0.128	472.0	301.2	0.127
	β_{321}	41.9	89.8	0.644	30.6	90.2	0.737	26.5	90.2	0.771	24.7	90.4	0.787
	β_{012}	-6.3	3.6	0.088	-6.3	3.6	0.089	-6.3	3.6	0.089	-6.3	3.6	0.089
	β_{022}	1.4	6.0	0.819	1.4	6.0	0.818	1.4	6.0	0.821	1.4	6.0	0.819
Certificate	β_{032}	-0.6	4.3	0.887	-0.6	4.3	0.890	-0.6	4.3	0.888	-0.6	4.3	0.890
	β_{122}	-351.2	304.9	0.258	-346.8	305.1	0.264	-345.9	305.0	0.265	-344.9	305.1	0.267
	β_{322}	94.5	119.3	0.434	93.4	119.9	0.442	92.9	120.1	0.445	92.7	120.2	0.446
	σ^2	60.2	65.1	0.362	64.9	67.6	0.344	62.2	65.9	0.353	64.7	67.4	0.345
$-2 \log$	L		13157			13146			13141			13151	
AIC			13189			13178			13173			13183	

Table 0.7 Regression parameter estimates (Est), their standard errors (SE), and p-values (P) according to a choice of r

May-12-2017 32 / 34

3

(日) (同) (三) (三)

Concluding remarks

- Propose a Lin-Ying-type transition intensity model with a log-normal frailty to analyze the semi-competing risks data with missing intermediate events
- Based on the simulation results, the proposed method satisfied the nominal level of CP
- Moreover the proposed method was robust to the choice of *r* and a misspecification of the underlying frailty distribution

Thank you!

J. Kim (Univ Suwon)

The KDISS Spring Conferenc

▲ ▲ ■ ▶ ■ つへの May-12-2017 34 / 34

(日) (周) (三) (三)