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We propose a multi-state model for 
analyzing semi-competing risks data 
with interval-censored or missing 
intermediate events. This model is an 
extension of the illness-death model 
(IDM), which includes three states:  
healthy, diseased, and dead. The 
diseased state can be regarded as the 
intermediate event. Two more states 
are added to the IDM to account for 
missing events, which are caused by 
a loss of follow-up before the end of 
the study; one is a state called the 
lost-to-follow-up (LTF) and the other 
is an unobservable state that 
represents an intermediate event 
experienced after the LTF occurred. 
We employ the additive and 
multiplicative hazards model with a 
log-normal frailty and construct the 
conditional likelihood to estimate the 
transition intensities among states in 
the multi-state model. 
Marginalization of the full likelihood 
is accomplished using adaptive 
importance sampling, and the 
optimal solution of the regression 
parameters is achieved through the 
iterative quasi-Newton algorithm. 
Simulation is performed to 
investigate the finite-sample 
performance of the proposed 
estimation method in terms of the 
relative bias and coverage probability 
of the regression parameters. Our 
proposed method is also illustrated 
using a dataset initially analyzed by 
Helmer et al. (2001).

𝜆𝑟𝑠(𝑡|𝒛,𝒘, 𝑢) = 𝜂(𝜷𝑟𝑠
′𝒛 + exp (𝜶𝑟𝑠

′𝒘)𝜃𝑟𝑠𝛾𝑟𝑠𝑡
𝛾𝑟𝑠−1),

where 𝜂 = exp ( 𝑢) is a log-normal frailty and 𝑢 follows a 

normal distribution 𝑁 0, 𝜎2 . The parameter vector 

estimated is 𝜻 = (𝜽∗, 𝜸∗, 𝜶∗, 𝜷∗, 𝜎2)′.

A total of six routes can be experienced by a subject: route 

1 (0 → 0), route 2 (0 → 2), route 3 (0 → 1), route 4 (0 → 1 

→ 2), route 5 (0 → 3), and route 6 (0 → 3 → 2). Therefore, 

likelihood functions 𝑄1 and 𝑄2 can be constructed for 

routes 1 and 2, respectively. 

𝑄𝑖1(𝑡𝑖) = exp { − 𝐻0(0, 𝑡𝑖)}.
𝑄𝑖2(𝑡𝑖) = 𝑄𝑖1(𝑡𝑖)𝜆02(𝑡𝑖).

We can have a refined set of time points:

0 = 𝑠0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑙 < 𝑠𝑙+1 = ∞.
We can define the weight 𝑤𝑖′𝑚 at 𝑠𝑚 (𝑚 = 1,2, … , 𝑙) for 

subject 𝑖′:

𝑤𝑖′𝑚 =
𝑑𝑖′𝑚 exp −𝐻0(0, 𝑠𝑚) 𝜆01(𝑠𝑚)

σ𝑚′=1
𝑙 𝑑𝑖′𝑚′ exp −𝐻0(0, 𝑠𝑚′) 𝜆01(𝑠𝑚′)

.

Likelihood functions can also be constructed for routes 3 

and 4:

𝑄𝑖3(𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖) = ෍

𝑚=1

𝑙

𝑑𝑖𝑚𝑤𝑖𝑚 exp { − 𝐻0(0, 𝑠𝑚)}𝜆01(𝑠𝑚).

𝑄𝑖4(𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖) = 𝑄3(𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖)𝜆12(𝑡𝑖).
Finally, likelihood functions for routes 5 and 6 are given by

𝑄𝑖5 𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖 =
exp { − 𝐻0(0, 𝑎𝑖)}𝜆03(𝑎𝑖)[exp { − 𝐻3(𝑎𝑖 , 𝑡𝑖)}

+න
𝑎𝑖

𝑡𝑖

exp { − 𝐻3(𝑎𝑖 , 𝑠)}𝜆34(𝑠) exp { − 𝐻4(𝑠, 𝑡𝑖)}𝑑𝑠].

𝑄𝑖6 𝑎𝑖 , 𝑏𝑖 , 𝑡𝑖 =
exp { − 𝐻0(0, 𝑎𝑖)}𝜆03(𝑎𝑖) [exp { − 𝐻3(𝑎𝑖 , 𝑡𝑖)}𝜆32(𝑡𝑖)

+ ቄ׬𝑎𝑖
𝑡𝑖 exp { − 𝐻3(𝑎𝑖 , )}𝜆34(𝑠) exp { − 𝐻4(𝑠, 𝑡𝑖)}𝑑𝑠}𝜆42(𝑡𝑖)].

Therefore, the likelihood function for 𝜻 is

𝐿 𝜻 =ෑ

𝑖=1

𝑛

ෑ

𝑗=1
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𝑄
𝑖𝑗

𝐼𝑖𝑗
𝜙 0, 𝜎2; 𝑢𝑖 .

In our analysis, we use the NLMIXED procedure of the 

SAS software to estimate 𝜻. We define the marginal 

likelihood as

𝑚(𝜻) = න⋯න𝐿 (𝜻)𝑑𝑢1⋯𝑑𝑢𝑛.

Then, we find the value of 𝜻 that minimizes 𝑓(𝜻) =
− log 𝑚 (𝜻), which is referred to as ෠𝜻. Consequently, the 

inverse of the Hessian matrix evaluated at ෠𝜻 is defined as 

the estimated variance-covariance matrix of ෠𝜻.

As depicted in Figure 1, the proposed model consists 

of five states. Let 𝑡 be the time from study entry. 𝑆𝑡 is 

defined as the state that each subject can take at 𝑡.
𝒜 = { (0,1), (0,2), (0,3), (1,2), (3,2), (3,4), (4,2)}.

Define 𝜆𝑟𝑠(𝑡) to be the transition intensity from states 

𝑟 to 𝑠 at 𝑡,

𝜆𝑟𝑠 𝑡 = lim
𝑑𝑡→0

𝑃𝑟 ( 𝑆𝑡+𝑑𝑡 = 𝑠 𝑆𝑡 = 𝑟

𝑑𝑡
, (𝑟, 𝑠) ∈ 𝒜,

and 𝜆𝑟𝑠 𝑡 = 0, (𝑟, 𝑠) ∉ 𝒜. The data corresponding to 

transitions 3 → 4 and 4 → 2 are not observable, 

requiring the following assumptions for 𝜆34(𝑡) and 

𝜆42 𝑡 :
𝜆34(𝑡) = 𝜆01(𝑡),
𝜆42 𝑡 = 𝜆12 𝑡 .

Given covariates 𝒛 and 𝒘, along with frailty 𝑢, we 

consider additive and multiplicative models defined as

The proposed model was illustrated using PAQUID 

data and yielded several promising results. The risk 

of transition from a healthy state to dementia is higher 

for women; however, the risk of death after being 

diagnosed with dementia is higher for men. Similar 

trends are found for non-diagnosed groups. 

Meanwhile, the risk of transition from a healthy state 

to dementia is higher for the educated group; the risk 

of death after being diagnosed with dementia is also 

higher for this group. There is, however, a reversed 

result for non-diagnosed targets. 

Furthermore, we conducted simulations with finite-

sample sizes to investigate the efficiency of the 

proposed estimators. In particular, we considered 

three different types of LTF proportions. In general, 

the coverage probabilities of the regression 

parameters are close to a nominal level of 0.95 in 

most cases. The proposed estimators turned out to 

be robust in terms of the misspecification of frailty 
distributions. 

In clinical trials, the occurrence of a non-fatal event 

can be detected in conjunction with possibly 

incessant monitoring during periodic follow-up. For 

illustration purposes of our methodologies, a dataset 

named PAQUID is analyzed to conduct a longitudinal 

study to investigate the meaningful prognostic factors 

associated with dementia. These data were initially 

analyzed by Helmer et al. (2001) using the 

conventional Cox (Cox, 1972) model. In this paper, 

we employ a semi-competing risks model where 

death may occur after dementia has occurred, but 

death censors the disease. As shown in the PAQUID 

data, dementia can be censored informatively by 

death. Furthermore, participants may be excluded 

from the study due to LTF. This makes it important to 

consider both cases; dementia is censored or not. 

Most of non-fatal event times are not observed 

exactly but lies on an interval of the form 𝐿, 𝑅 . We 

could emulate Barrett et al. (2011) and assume that a 

non-fatal event of a subject occurs uniformly on the 

interval (𝐿, 𝑅]. However, using the methods proposed 

by Lindsey and Ryan (1998), we instead partition the 

interval (𝐿, 𝑅] into a few sub-intervals, in which a non-

fatal event can occur. 

In addition, we propose an additive-multiplicative 

model by combining the Cox (Cox, 1972) proportional 

hazards model with the additive risk model of Lin and 

Ying (1994), in accordance with a multi-state model.

Barrett J K, Siannis F, Farewell VT. (2011). A semi-

competing risks model for data with interval-

censoring and informative observation: An application 

to the MRC cognitive function and ageing study. 

Statistics in Medicine, 30, 1-10. 

Figure 1 : A multi-state model
low moderate high 

(LTF(%)=22.6) (LTF(%)=34.2) (LTF(%)=47.3) 

true r.Bias SD SEM CP r.Bias SD SEM CP r.Bias SD SEM CP  

parameter value (%) (×

105)

(×

105)

(%) (%) (×

105)

(×

105)

(%) (%) (×

105)

(×

105)

(%)  

imputed-by-the-right-endpoint method 

𝛼01 0.01 81.7 15026 15104 96.8 73.3 15105 14975 95.2 20.6 14450 15186 96.2  

𝛼02 0.01 176.2 22297 22961 95.4 324.5 24408 24066 94.8 28.8 27643 27426 95.4  

𝛼03 0.01 133.2 27006 26429 95.4 86.1 16223 17086 96.2 75.3 13291 13250 95.2  

𝛼12 0.01 -145.7 28481 25849 95.2 -113.4 29996 26279 93.6 74.1 27309 25620 96.2  

𝛼32 0.01 109.7 65489 55615 93.2 77.1 36087 33747 96.8 50.8 26680 25219 94.8  

𝛽01 0.004 -10.1 81 87 93.8 -9.4 80 88 91.6 -8.6 87 88 92.6  

𝛽02 0.004 1.1 92 92 94.6 -1.4 97 96 94.4 -0.4 103 101 94.0  

𝛽03 0.004 -7.2 87 86 91.2 -6.4 105 105 93.4 -9.3 136 133 91.6  

𝛽12 0.004 3.5 115 115 97.0 5.7 112 116 95.6 3.4 116 115 95.8  

𝛽32 0.004 -0.3 217 199 96.8 7.6 174 173 96.4 5.3 148 152 97.2  

𝜎2 0.01 904.5 8164 8782 93.8 815.5 7848 8084 92.4 771.6 7626 7076 90.4  

proposed method 

𝛼01 0.01 32.2 15236 15136 96.2 64.8 15344 15084 95.0 20.7 14496 15279 96.2  

𝛼02 0.01 70.2 22692 22951 95.0 286.1 24010 24133 95.2 100.4 28030 27569 95.2  

𝛼03 0.01 289.4 27525 26349 95.0 121.3 16740 17161 95.0 86.3 13465 13391 95.0  

𝛼12 0.01 -24.6 26718 25661 95.8 -83.4 29355 26230 94.0 -37.0 27102 25736 96.2  

𝛼32 0.01 123.2 67188 56122 93.6 93.4 36291 33577 95.6 54.0 26591 25204 94.2  

𝛽01 0.004 -5.5 89 90 95.0 -5.0 85 91 93.8 -5.3 88 91 94.4  

𝛽02 0.004 5.9 95 97 96.2 4.0 99 100 94.2 4.8 107 106 94.8  

𝛽03 0.004 -1.7 92 91 93.2 -1.7 107 110 95.6 -3.3 141 139 93.4  

𝛽12 0.004 -1.9 109 110 96.4 0.9 108 112 95.2 0.1 110 111 96.0  

𝛽32 0.004 1.0 214 199 96.6 8.4 179 175 96.2 4.4 150 153 97.0  

𝜎2 0.01 1016.2 9069 9074 92.2 897.8 7743 8198 91.0 874.1 7616 7423 87.2  

Table 1 : Empirical results for the averages of the relative bias (r.Bias) and standard 

errors (SEM), standard deviation (SD), and coverage probability (CP) for the 

regression parameters and variance parameter of the log-normal frailty based on the 

‘imputed-by-the-right-endpoint’ and ‘proposed’ methods under three types of LTF 

proportions (‘low’, ‘moderate’, and ‘high’)

𝑈(−0.173,0.173) 𝐷𝐸(0.007) 𝐺(100.5,0.01)

(LTF(%)=34.4) (LTF(%)=34.5) (LTF(%)=34.5) 

true r.Bias SEM CP r.Bias SEM CP r.Bias SEM CP  

parameter value (%) (×

105)

(%) (%) (×

105)

(%) (%) (×

105)

(%)  

𝛼01 0.01 40.9 15169 94.2 36.7 15215 94.8 -28.7 15089 96.2  

𝛼02 0.01 -83.8 24639 97.0 89.0 24401 94.4 45.0 24623 96.6  

𝛼03 0.01 58.9 17266 93.8 -110.5 16925 93.8 119.9 17198 93.6  

𝛼12 0.01 -27.9 26141 94.8 27.1 26318 93.2 159.3 25682 95.2  

𝛼32 0.01 -80.1 33158 94.0 -22.5 33619 94.0 -82.4 33595 91.8  

𝛽01 0.004 -5.8 90 94.0 -3.3 91 94.0 -6.7 90 92.2  

𝛽02 0.004 4.9 100 94.8 5.4 101 97.0 4.4 99 95.4  

𝛽03 0.004 -2.9 109 91.0 -2.8 110 94.4 -2.9 108 91.8  

𝛽12 0.004 2.3 111 95.0 0.6 110 94.8 -0.3 111 95.6  

𝛽32 0.004 0.8 169 96.0 2.9 171 96.8 5.2 170 96.4  

𝜎2 0.01 974.2 8325 89.4 926.1 8284 89.6 928.7 8462 89.2  

Table 2 : Sensitivity analysis of the ‘proposed’ method depending on 

the underlying frailty  distribution in terms of the averages of the 

relative bias (r.Bias) as well as the standard errors (SEM) and 

coverage probability (CP) when the LTF proportion is ‘moderate’

transition models 

covariate 0 → 1 0 → 2 1 → 2 0 → 3 3 → 2

gender 0.063 < 0.001 0.093 0.354 0.062 

certificate 0.963 < 0.001 0.147 0.754 0.148 

Table 3 : 𝑃-values of the test used to check the proportional hazard assumption for 

each transition model

covariate parameter Est SE 𝑃

gender 𝛽01 -7.70× 10−4 3.32× 10−4 0.027  

𝛽02 1.93× 10−3 5.35× 10−4 0.001  

𝛽12 0.0626 0.0339 0.074  

𝛽03 -5.50× 10−4 3.69× 10−4 0.144  

𝛽32 6.66× 10−3 0.0116 0.570  

certificate 𝛼01 -0.264 0.163 0.115  

𝛼02 0.0251 0.131 0.850  

𝛼12 -0.300 0.296 0.319  

𝛼03 -0.0245 0.144 0.866  

𝛼32 0.101 0.201 0.620  

𝜎2 0.00352 0.00598 0.560  

Table 4 : Regression parameter estimates (Est) with the accompanying 

standard errors (SE) and 𝑝-values (𝑃)


