Risk factors and transitional probability of clinical events in the Korean CKD patients using the multi-state models

Jinheum Kim¹·Ji Hye Kim²

¹Department of Applied Statistics, University of Suwon, Korea ²Department of Internal Medicine, Chungbuk National University Hospital, Korea

> Waseda University, Tokyo, Japan August 1, 2023

1/25

E 6 4 E 6

Outline

- Background
- Review non-parametric and semi-parametric approaches in multi-state models
- Develop a conceptual model for analyzing data from the KoreaN cohort study for Outcomes in patients With Chronic Kidney Disease (KNOW-CKD)
- Predict transition probabilities and identify risk factors for clinical events
- Concluding remarks

イヨト イモト イモト

Background

- Chronic kidney disease (CKD) patients are not only exposed to fatal events such as death during the study period, but also to non-fatal events such as cardiovascular diseases (CVD) and end-stage renal diseases (ESRD)
- Non-fatal events are called intermediate events
- Estimating the survival probabilities of CKD patients by ignoring intermediate events may yield misleading results
- In situations where intermediate events in a patient's disease progression may occur, it is not advisable to employ a two-state model with an alive state and a dead state; instead, it is recommended to utilize the multi-state models generated by adding intermediate states to the two-state model

< □ > < □ > < □ > < □ > < □ > < □ >

Purpose

- To investigate whether patients who experienced intermediate events were more exposed to the risk of death than those who did not
- To investigate whether patients with ESRD were more exposed to the risk of death than those with CVD
- To identify the risk factors that affect the intensity of each transition
- To investigate whether the pattern of each transition differs depending on the CKD subtype

・ 何 ト ・ ヨ ト ・ ヨ ト

Continuous-time Markov multi-state process

- X_t : state a patient is in at time $t(\geq 0)$
- State space: $\mathcal{S} = \{0, 1, 2, \dots, J\} \Rightarrow X_t \in \mathcal{S}$
- Assume $\{X_t\}_{t \ge 0}$ to be Markov \Leftrightarrow Letting $H_s = \{X_u, 0 \le u < s\}$,

$$P(X_t = j | X_s = I, \mathcal{H}_s) = P(X_t = j | X_s = I), I, j \in S$$

- The *i*th patient is subject to a right-censoring time C_i and possibly also to a left-truncation time L_i (i = 1, 2, ..., n)
- Y_{l;i}(t) := I(X⁽ⁱ⁾_{t−} = I, L_i < t ≤ C_i) : indicator of the *i*th patient being in state I and under observation just before time t
- $N_{lj;i}(t)$: patient *i*'s number of observed $l \rightarrow j$ transition in [0, t]

5 / 25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-parametric approach: NA estimator

- $\lambda_{lj}(t) := \lim_{dt\downarrow 0} \frac{P(X_{(t+dt)} j|X_{t-} = l)}{dt}, l, j \in S : I \to j$ transition intensity at time t
- $\Lambda_{lj}(t) := \int_0^t \lambda_{lj}(u) du$: cumulative $l \to j$ transition intensity
- The Nelson-Aalen (Nelson, 1972; Aalen, 1978) estimator of $\Lambda_{lj}(t)$:

$$\hat{\Lambda}_{lj}(t) := \sum_{s \leq t} \frac{\Delta N_{lj}(s)}{Y_l(s)} \ (l \neq j),$$

- Y_l(t) := ∑ⁿ_{i=1} Y_{l;i}(t) : the number of patients to be observed at risk in state l just priot to time t
- $\Delta N_{lj}(t) := N_{lj}(t) N_{lj}(t-)$, where $N_{lj}(t) := \sum_{i=1}^{n} N_{lj;i}(t)$: the number of observed $l \rightarrow j$ transition in [0, t]

6 / 25

イロト 不得 トイヨト イヨト 二日

Non-parametric approach: AJ estimator

• Matrix of transition probabilities:

$$\mathbf{P}(s,t) := (P_{lj}(s,t)), l, j \in \mathcal{S},$$

•
$$P_{lj}(s,t) := P(X_t = j | X_s = l), s \le t$$

• The Aalen-Johansen (Aalen & Johansen, 1978) estimator of $\mathbf{P}(s,t)$:

$$\hat{\mathsf{P}}(s,t) := \prod_{u \in (s,t]} (\mathsf{I} + \Delta \hat{\mathsf{A}}(u)),$$

•
$$\prod_{u \in (s,t]} : \text{ matrix product over all event times } u \text{ in } (s,t]$$

• $I : (J+1) \times (J+1) \text{ identity matrix}$
• $\Delta \hat{\Lambda}(t) := (\hat{\Lambda}_{lj}(t) - \hat{\Lambda}_{lj}(t-)) \text{ with } \hat{\Lambda}_{ll}(t) := -\sum_{j:j \neq l} \hat{\Lambda}_{lj}(t)$

Image: A matrix and a matrix

Semi-parametric approach: Parameter estimation

• Transition-specific Cox model: given a vector of covariates z_i , for the $l \rightarrow j$ transition,

$$\lambda_{lj;i}(t; \mathbf{z}_i) = \lambda_{lj;0}(t) \exp(\beta'_{lj} \mathbf{z}_i),$$

- $\lambda_{lj;0}(t)$: unspecified baseline l o j transition intensity
- β_{lj} : a vector of transition-specific coefficients
- cf. analogous to the cause-specific hazard $\lambda_{0j;i}(t; z_i)$ of a competing risk model (say, starting state = 0)
- Cox-type log partial likelihood (de Weede et al., 2010; Andersen et al., 1993):

$$\sum_{l\neq j}\sum_{i=1}^{n}\left[\int_{0}^{\infty}\beta_{lj}'z_{i}dN_{lj;i}(t)-\log\left\{\sum_{i=1}^{n}Y_{l;i}(t)\exp(\beta_{lj}'z_{i})\right\}dN_{lj;i}(t)\right]$$

• cf. weighted risk set in competing risks framework: $\sum_{i=1}^{n} Y_{0;i}(t) \exp(\beta'_{0j} z_i)$

J Kim (Univ Suwon)

August-1-2023

Semi-parametric approach: Breslow-type estimator

• The Breslow-type estimator of $\Lambda_{lj;0}(t) := \int_0^t \lambda_{lj;0}(u) du$:

$$\hat{\Lambda}_{lj;0}(t) := \sum_{s \leq t} \frac{\Delta N_{lj}(s)}{\sum_{i=1}^{n} Y_{l;i}(s) \exp(\hat{\beta}'_{lj} z_i)},$$

•
$$\hat{eta}_{lj}$$
 : MLE of eta_{lj}

• cf. the NA estimator: $\hat{\Lambda}_{lj;0}(t) = \sum_{s \leq t} \frac{\Delta N_{lj}(s)}{\sum_{i=1}^{n} Y_{l;i}(s) imes 1}$

• The estimator of the cumulative $l \rightarrow j$ transition intensity, $\Lambda_{lj}(t;z) := \int_0^t \lambda_{lj}(u;z) du$:

$$\hat{\Lambda}_{lj}(t;z) := \hat{\Lambda}_{lj;0}(t) \exp(\hat{\beta}'_{lj}z) \ (l \neq j)$$

with $\hat{\Lambda}_{ll}(t;z) := -\sum_{j:j \neq l} \hat{\Lambda}_{lj}(t;z) \ (l=j)$

Semi-parametric approach: AJ-type estimator

• Matrix of transition probabilities: given covariates z₀,

$$\mathbf{P}(s,t;z_0):=(P_{lj}(s,t;z_0)), l,j\in\mathcal{S},$$

•
$$P_{lj}(s,t;z_0) := P(X_t = j | X_s = l, z_0), s \le t$$

• The Aalen-Johansen-type estimator of $P(s, t; z_0)$:

$$\hat{\mathsf{P}}(s,t;z_0) := \prod_{u \in (s,t]} (\mathsf{I} + \mathrm{d}\hat{\mathsf{A}}(u;z_0)),$$

•
$$\mathrm{d}\hat{\boldsymbol{\Lambda}}(t;z_0) := (\hat{\boldsymbol{\Lambda}}_{lj}(t;z_0) - \hat{\boldsymbol{\Lambda}}_{lj}(t-;z_0))$$

J Kim (Univ Suwon)

E 6 4 E 6

< (T) > <

Figure 1: Inclusion and exclusion processes for the analytic sample from the KNOW-CKD data

11 / 25

< □ > < □ > < □ > < □ > < □ > < □ >

Table 1: Number (%) of observed transitions, number of censored observations, and total number at risk

From	CVD	ESRD	Death	No events	Total
Stage1-4	130 (8.6)	394 (26.2)	50 (3.3)	929 (61.8)	1503
CVD	-	33 (25.4)	$18^1 (13.8)$	79 (60.8)	130
ESRD	0(0)	-	54 (13.7)	340 (86.3)	394

EcoStat 2023, Tokyo

э

12 / 25

A D N A B N A B N A B N

 $^{^{1}}$ 15: dead with CVD; 3:dead with CVD and ESRD

Figure 2: A conceptual model for analyzing data from the KNOW-CKD

1 121 1		1
I NIM I		
5	onne ounon,	2

EcoStat 2023, Tokyo

August-1-2023

<ロト < 四ト < 三ト < 三ト

13 / 25

2

Figure 3: A four-state model for analyzing data from the KNOW-CKD

•
$$\mathcal{S} = \{0, 1, 2, 3\}$$
 : state space

• $\{0 \rightarrow 1, 0 \rightarrow 2, 0 \rightarrow 3, 1 \rightarrow 3, 2 \rightarrow 3\}$: set of all possible direct $I \rightarrow j$ transitions

J Kim (Univ Suwon)

Figure 4: The NA estimates of the cumulative transition intensity for all five direct transitions

æ

15 / 25

イロト イヨト イヨト イヨト

Predicted transition probabilities

- $s < T_1 < T_2 < \cdots < T_m \leq t$: times of observed transitions between any two states
- $\hat{\mathbf{P}}(s,t) = \prod_{k=1}^{m} (\mathbf{I} + \Delta \hat{\mathbf{\Lambda}}(T_k))$, with

$$\mathbf{I} + \Delta \hat{\mathbf{\Lambda}}(T_k) = \begin{bmatrix} 1 - \frac{\Delta N_0(T_k)}{Y_0(T_k)} & \frac{\Delta N_{01}(T_k)}{Y_0(T_k)} & \frac{\Delta N_{02}(T_k)}{Y_0(T_k)} & \frac{\Delta N_{03}(T_k)}{Y_0(T_k)} \\ 0 & 1 - \frac{\Delta N_{13}(T_k)}{Y_1(T_k)} & 0 & \frac{\Delta N_{13}(T_k)}{Y_1(T_k)} \\ 0 & 0 & 1 - \frac{\Delta N_{23}(T_k)}{Y_2(T_k)} & \frac{\Delta N_{23}(T_k)}{Y_2(T_k)} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where $N_0 = N_{01} + N_{02} + N_{03}$

3

Predicted transition probabilities

•
$$\hat{P}_{00}(s,t) = \prod_{k=1}^{m} \left(1 - \frac{\Delta N_0(T_k)}{Y_0(T_k)}\right),$$

• $\hat{P}_{jj}(s,t) = \prod_{k=1}^{m} \left(1 - \frac{\Delta N_{j3}(T_k)}{Y_j(T_k)}\right), \ j = 1, 2,$
• $\hat{P}_{33}(s,t) = 1,$

- $\hat{P}_{12}(s,t) = 0,$
- For *j* = 1, 2,

$$\begin{aligned} \hat{P}_{j3}(s,t) &= \int_{s}^{t} \hat{P}_{jj}(s,u-)d\hat{\Lambda}_{j3}(u) \\ &= \sum_{k=1}^{m} \left[\prod_{h=1}^{k-1} \left(1 - \frac{\Delta N_{j3}(T_h)}{Y_j(T_h)}\right) \frac{\Delta N_{j3}(T_k)}{Y_j(T_k)}\right], \end{aligned}$$

• For *j* = 1, 2,

$$\begin{split} \hat{P}_{0j}(s,t) &= \int_{s}^{t} \hat{P}_{00}(s,u-) d\hat{\Lambda}_{0j}(u) \hat{P}_{jj}(u,t) \\ &= \sum_{k=1}^{m} \left[\prod_{h=1}^{k-1} \left(1 - \frac{\Delta N_{0}(T_{h})}{Y_{0}(T_{h})} \right) \frac{\Delta N_{0j}(T_{k})}{Y_{0}(T_{k})} \prod_{h=k+1}^{m} \left(1 - \frac{\Delta N_{j3}(T_{h})}{Y_{j}(T_{h})} \right) \right], \end{split}$$

イロト イポト イヨト イヨト

э

Predicted transition probabilities

$$\hat{P}_{03}(s,t) = \int_{s}^{t} \hat{P}_{00}(s,u-)d\hat{\Lambda}_{03}(u) + \sum_{j=1}^{2} \int_{s}^{t} \hat{P}_{00}(s,u-)d\hat{\Lambda}_{0j}(u)\hat{P}_{j3}(u,t)$$

$$= \sum_{k=1}^{m} \left[\prod_{h=1}^{k-1} \left(1 - \frac{\Delta N_{0}(T_{h})}{Y_{0}(T_{h})} \right) \left\{ \frac{\Delta N_{03}(T_{k})}{Y_{0}(T_{k})} + \sum_{j=1}^{2} \frac{\Delta N_{0j}(T_{k})}{Y_{0}(T_{k})} \sum_{g=k+1}^{m} \left[\prod_{p=k+1}^{g-1} \left(1 - \frac{\Delta N_{j3}(T_{p})}{Y_{j}(T_{p})} \right) \frac{\Delta N_{j3}(T_{g})}{Y_{j}(T_{g})} \right] \right\} \right]$$

3

18 / 25

・ロト ・四ト ・ヨト ・ヨト

Figure 5: Equivalent to the model displayed in Figure 3

• The probabilities of transition to death w/o CVD or ESRD, with CVD or with ESRD can be calculated separately

J Kim (Univ Suwon)

EcoStat 2023, Tokyo

August-1-2023

< □ > < □ > < □ > < □ > < □ > < □ >

Figure 6: Stacked transition probabilities from state 0, $\hat{P}_{0i}(0, t), j = 0, 1, 2, ..., 5$

20 / 25

A D N A B N A B N A B N

Table 2: The Odds ratio (95% CI) of each predictor obtained from multivariate analysis

-				Transition			
Predictor	M±SD	$0 \rightarrow 1$	$0 \rightarrow 2$	$0 \rightarrow 3$	1 ightarrow 3	$2 \rightarrow 3$	
Gender	922(61.3) ²	1.2	1.29	1.51	0.87	1.46	
(ref: female)		(0.71, 2.02)	(0.99, 1.69)	(0.63, 3.63)	(0.16, 4.81)	(0.59, 3.57)	
Smoker	712(47.4)	1.2	1.04	1.32	0.92	0.85	
(ref: no)		(0.75, 1.92)	(0.80, 1.35)	(0.61, 2.82)	(0.22, 3.83)	(0.39, 1.87)	
CVD history	131(8.7)	2.75	1.46	2.21	0.85	1.74	
(ref: no)		(1.80, 4.22)	(1.05, 2.03)	(1.10, 4.45)	(0.26, 2.74)	(0.87, 3.51)	
Age	53 ± 12	1.05	0.97	1.05	1.1	1.13	
		(1.03, 1.07)	(0.96, 0.98)	(1.01, 1.08)	(1.02, 1.19)	(1.09, 1.17)	
BMI	24.5 ± 3.4	0.95	1	0.92	0.89	0.96	
		(0.90, 1.01)	(0.97, 1.03)	(0.84, 1.02)	(0.73, 1.09)	(0.88, 1.06)	
SBP	127 ± 15	1	1.01	1.02	1.01	1	
		(0.99, 1.01)	(1.01, 1.02)	(1.00, 1.04)	(0.97, 1.04)	(0.98, 1.02)	
eGFR	54 ± 30	1	0.91	0.99	1	-	
		(0.99, 1.01)	(0.90, 0.92)	(0.97, 1.00)	(0.98, 1.03)	-	
log(FGF-23+1)	2.4 ± 1.5	1	1.14	1.13	0.96	0.89	
		(0.89, 1.13)	(1.05, 1.23)	(0.92, 1.39)	(0.70, 1.31)	(0.73, 1.09)	
log(hs-CRP)	-0.45 ± 1.4	1.07	0.94	1.14	0.96	1.26	
		(0.94, 1.21)	(0.88, 1.01)	(0.94, 1.38)	(0.65, 1.42)	(1.03, 1.55)	
CKD subtype (ref: GN)							
DM	357(23.8)	2.87	1.89	3.51	1.51	0.73	
	. ,	(1.73, 4.77)	(1.45, 2.45)	(1.33, 9.25)	(0.39, 5.86)	(0.35, 1.55)	
HTN	287(19.1)	1.25	0.57	2.12	0.88	0.37	
		(0.72, 2.17)	(0.41, 0.79)	(0.78, 5.77)	(0.15, 5.24)	(0.14, 1.01)	
PKD	289(19.2)	1.45	1.72	4.44		1.67	
		(0.78, 2.7)	(1.24, 2.39)	(1.60, 12.28)	-	(0.62, 4.49)	
2n(0/)				(🗆)		◆ 差 → 「 差」	
J Kim (Univ Suwon)		EcoStat 2023, Tokyo			August-1-2023		

21 / 25

Table 3: Number (%) of patients to each of the six progression pathways by CKD subtype

CKD	Progression pathway						
subtype	PW1 ³	PW2 ⁴	PW3 ⁵	PW4 ⁶	PW5 ⁷	PW6 ⁸	Total
GN	418 (73.3)	6 (1.1)	23 (4.0)	4 (0.7)	107 (18.8)	12 (2.1)	570
DM	120 (33.6)	19 (5.3)	44 (12.3)	11 (3.1)	135 (37.8)	28 (7.8)	357
HTN	184 (64.1)	14 (4.9)	28 (9.8)	3 (1.0)	51 (17.8)	7 (2.4)	287
	()			- (-)		- ()	
PKD	207 (71.6)	11 (3.8)	17 (5.9)	0 (0)	47 (16.3)	7 (2.4)	289
		()				()	
Iotal	929 (61.8)	50 (3.3)	112 (7.5)	18 (1.2)	340 (22.6)	54 (3.6)	1503

³alive without CVD or ESRD
 ⁴dead without CVD or ESRD
 ⁵alive with CVD
 ⁶dead with CVD
 ⁷alive with ESRD
 ⁸dead with ESRD

J Kim (Univ Suwon)

Figure 7: Stacked transition probabilities of male and non-smoker patient without a CV family history, as well as the median values of the quantitative predictors by CKD subtype

< □ > < □ > < □ > < □ > < □ > < □ >

Concluding remarks

- A multi-state model was proposed to analyze the KNOW-CKD data
- The risk of developing ESRD was higher than that of CVD. CKD patients with intermediate events had a higher risk of death than those without an intermediate event. The risk of death was not significantly different between patients with ESRD and those who experienced CVD
- Risk factors for ESRD were CKD subtype, family history of CV, eGFR, FGF-23, age, and SBP, and risk factors for death after ESRD were age and hs-CRP
- eGFR is a very important marker for CKD patients. To investigate the association between markers, which are longitudinal outcomes, and each transition of multi-state models, we will expand our proposed model to a joint model

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Thank you!

J Kim (Univ Suwon)

EcoStat 2023, Tokyc

August-1-2023

イロン 不聞 とくほとう ほとう

25 / 25

3